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GENERAL INTRODUCTION 

An Explanation of the Dissertation Organization 

This dissertation begins with a general review of the literature focusing on the 

effects of a raw-beef mixed diet vs. a com-soy based diet on skeletal muscle metabolism of 

exercised greyhounds. The literature review concentrates on (1) the effect of diet on key 

enzyme activities involved in energy production in trained dogs, (2) the thermodilution 

method of determining blood flow to the hindleg and (3) the effect of diet and exercise on 

alanine-glucose cycle substrate availability. Following the literature review are three papers 

presented in publication form. Paper 1 addresses the effect of diet on glycogen content and 

enzymes involved in energy production and included specifically citrate synthase, 

phosphofructokinase, and glutamate-pyruvate transaminase. Paper 2 describes an original 

application of a thermodilution technique used to determine blood flow in the external iliac 

vein of the conscious greyhound. This method was needed in order to determine the 

utilization of compounds across the hindleg of the greyhounds used in Paper 3. Paper 3 

addresses the effect of test diets on concentrations of alanine, leucine, isoleucine, valine, 

glycine, glucose, and lactate in plasma and skeletal muscle. Following the papers is a 

general summary that addresses the effect of diet and training on greyhound skeletal muscle 

metabolism. The dissertation concludes with the list of references cited. 

General Literature Review 

Greyhounds 

Greyhound diet Greyhound dogs have traditionally been fed a raw meat-mix 

diet (Lassen et al., 1986; Konke, 1983). Trainers believe racing performance is improved 

when meat is present in the diet, although this assumption may be due to psychological 
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factors in diet preference more than to physiological factors. Feeding pattern is basically 

uniform throughout the industry and consists of a single large meal, sometimes 

supplemented with a small "snack" prior to evening racing (Baumhover, 1986). This 

feeding pattern has recently been shown to result in increased hepatic storage of glycogen 

resulting in glycogen sparing during exercise in rats (Nagamatsu and Arao, 1990). In this 

study, rats that were fed a large meal then rested before a treadmill workout had lower 

plasma free fatty acid concentrations and higher liver glycogen concentrations than rats fed 

a large meal immediately before workout. Glycogen sparing has been associated with 

decreased muscle fatigue (Fitts et al., 1975). 

Greyhounds utilize the phosphate generating system and glycogenolysis as primary 

sources of energy in a 30 second bout of exercise (Grandjean and Paragon, 1992) as do 

humans (Hirvonen et al., 1987; McCartney et al., 1986). Performance during short-term 

maximal exercise depends on muscle capacity to utilize high-energy phosphates at the 

beginning of a race and performance decreases when such phosphate stores are depleted, 

causing glycolysis to increase (Hirvonen et al., 1987). The bioavailability of muscle 

phosphagens is not affected by training or diet (Grandjean and Paragon, 1992); however, 

dietary enhancement of glycogen formation is possible (Bergstrom et al., 1967; Nagamatsu 

and Arao, 1990). 

Most diet studies with dogs have concentrated on endurance rather than sprinting 

performance (Kronfeld, 1973; Hammel et al., 1977). A high fat diet improves 

performance of sled dogs engaged in severe endurance activity (Kronfeld, 1973). Most 

literature accounts of diets specific for greyhounds focus on which percentage of raw beef 

mixed with a com-soy based food is ideal to the racing dog (Davis, 1977) rather than if raw 

beef is ideal to the sprinting dog at all. Dietary raw beef can increase greyhound packed 

cell volume (PCV), red blood cell count (RBC), and hemoglobin (Hb) content (Drisko, 
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1988), but this increase is caused by dehydration rather than by a hematinic effect (Engen, 

1992), which is likely not to be beneficial to performance. 

Greyhound muscle and serum chemistry values Baseline values for 

plasma lactic acid, glutamate-pyruvate transaminase (OPT) activity, and glucose 

concentration in greyhounds are 0.57 ±0.09 mM, 46 ± 16 U/L, and 6.0 + 1.1 mM, 

respectively (Ilkiw et al., 1989). Greyhound blood lactate concentrations have been 

reported as 0.88 ± .004 mM (Bjotvedt, 1984) and 2.15 ± 0.263 mM (Dobson et al., 

1988). 

Greyhound muscle (GPT) activity has been reported as 56 ± 6 |j,mol*min"l*g"l 

(Rose and Bloomberg, 1989). Greyhound resting biceps femoris muscle measurements 

are reported for lactate, 3.49 ± 0.13 jimol/g wwt; pyruvate, 0.173 ± 0.015 [xmol/g wwt; 

and glycogen, 71.80 ± 8.52 nmol/g wwt (Dobson et al., 1988). 

Dobson et al. (1988) did extensive work on quantifying greyhound biochemistry 

response to a sprint. In that study, greyhounds seemed to have a 25% higher 

glycogenolytic capacity per g muscle than did the Thoroughbred horse and 43% higher 

capacity than did humans. The increased ability to catabolize glycogen may account for the 

high lactic acid concentrations, up to 28.9 ± 3.0 mM, that can occur in greyhound muscle 

post-exertionally (Dobson et al., 1988; Ilkiw et al., 1989; Snow et al., 1988). The 

buffering capacity of greyhound muscle was not different from that of other animals, 

though; therefore, the authors contributed increased blood flow that physically removes 

lactate with combating acidosis in greyhounds. Greyhounds do have a greater ability to 

remove lactate and thus reestablish pre-race metabolite concentrations than do 

Thoroughbred horses or man (Harris et al., 1987; Dobson et al., 1988; Ilkiw et al., 1989), 

which may be a result of increased blood flow. 

Fiber types There are inherent difference between type I, type Ila and type lib 

skeletal muscle fibers. Functional differences are related to energy utilization and 
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production differences (Baldwin et al., 1972; Barnard et al., 1971; Bass et al., 1969; 

Lowry et al., 1978; Nelson and Tashiro, 1973; Opie and Newsholme, 1966; Pette and 

Staudte, 1973; Spamer and Pette, 1977). Type I fibers are high in myoglobin and enzymes 

of the citric acid cycle. Therefore, these fibers are best suited for oxidative metabolism 

required in endurance work. Type II fibers are primarily glycolytic, but are divided into 

two sub-groups based on oxidative ability within those fibers. Type Ila fibers are 

oxidative-glycolytic, and lib fibers are purely glycolytic. 

Greyhound hindleg skeletal muscle is 85-100% fast-twitch fibers which is a larger 

percentage of fast-twitch fibers than the 60% reported in similar muscles of non-greyhound 

breeds (Aguera et al., 1990; Gunn, 1978; Guy and Snow, 1981). Whether those fibers in 

greyhounds are primarily glycolytic (lib) or oxidative-glycolytic (lia) is controversial 

(Armstrong et al., 1982; Gunn, 1978; Gunn, 1975; Guy and Snow, 1981; Snow, 1985; 

Taylor, 1988). Greyhounds also have a greater number of fibers in cross-sectional areas of 

hindleg muscle than do other breeds of dogs (Gunn, 1979). Greyhound muscle has high 

creatine kinase and aldolase activities, which are typically associated with anaerobic 

capacity (Guy and Snow, 1981). These dogs also have an increased ability to withstand 

and clear lactate (Ukiw et al., 1989), although lactate dehydrogenase (LDH) activity (Guy 

and Snow, 1981) or buffering capacity (Dobson et ai., 1988; Harris et al., 1990) in 

greyhounds is not different from those of other breeds of dogs. 

Although endurance training is typically associated with increases in citric acid cycle 

enzymes (Holloszy, 1967; Holloszy et al., 1970), it may also enhance glycolytic capacity 

in both type I and type II skeletal muscle fibers in horses (Essen-Gustavsson and 

Henriksson, 1984). Explanations for such exercise-induced increases in oxidative capacity 

of muscle are controversial. Baldwin et al. (1972) does not believe it is due to 

transformation of type I into type II fibers but rather because of enhanced enzyme activity 

within each fiber proportionately. A recent report, however, claims that type I fibers can be 
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transformed into type Ila with high-intensity training (Jansson et al., 1990). This study 

used ATPase staining to determine fiber type. The high intensity training was believed to 

increase stimulation frequency, and subsequently induce type H myosin. 

Influence of exercise on glycogen and energy-producing enzymes 

Several review articles have been written to provide a complete and understandable 

overview of the biochemical adaptations to endurance exercise (Felig, 1977; Holloszy, 

1973; Holloszy, 1973b; Holloszy et al., 1973; Ruderman, 1975). Fewer reviews are 

available that illustrate the adaptations to acute exercise, however (Abernethy et al., 1990; 

Viru, 1987). 

Glycogen Glycogen degradation in both type I and type lib fibers is directly 

correlated with intensity and duration of exercise (Goldfarb et al., 1989) and is greatest 

with intermittent exercise (Ward et al., 1982). The magnitude of the glycogen sparing 

effect seen in training is directly correlated with increased muscle respiratory capacity in 

rats (Pitts et al., 1975). The availability of glycogen, however, has been determined not to 

limit high intensity exercise performance (Hermansen, 1981; Greenhaff et al., 1988), 

although selective glycogen depletion in type lib fibers may cause fatigue (Tesch, 1980). 

Saltin and Karlsson (1971) did an extensive study that examined individual muscle fiber 

recruitment and glycogen content of those fibers with work intensities. They found that at 

work rates below 50% maximal oxygen uptake (VO2 max), glycogen depletion does not 

occur and therefore does not contribute to exhaustion. At work rates between 65-89% VO2 

max, glycogen depletion is the limiting factor in exhaustion. At work loads above 90% 

VO2 max, lactate accumulation, and not glycogen depletion, is the limiting factor in 

performance. Glycogen utilization and resynthesis is not limited within the exercised 

muscle, alone. Unexercised leg muscle can provide substrate to exercised arm muscle via 

the Cori cycle (Ahlborg et al., 1986). 
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Glycogen stores are highest in fast-twitch fibers because glycogen is the primary 

energy source in these fibers. Lactate production in rodents (Baldwin et al., 1977) and 

man (Schlicht et al., 1990) is primarily from these fast glycolytic fibers. In horses, also, 

muscle and blood lactate accumulation is positively correlated with amount of glycogen 

utilized (Valberg et al., 1985). The same correlations between glycogen and lactate found 

in other species most likely apply to greyhound fibers as well. 

Glutamate-pyruvate transaminase Glutamate-pyruvate transaminase (OPT) 

is responsible for increased capacity to generate alanine from pyruvate and citric acid cycle 

intermediates from glutamate (Mole et al., 1973). Several compounds influence GPT 

activity, and their mechanisms have been theorized for many years. Glucose inhibits the 

activity of GPT and thus suppresses gluconeogenesis at the point of conversion of pyruvate 

to alanine (Exton and Park, 1967). Glucagon is thought to act by stimulating GPT activity 

because it stimulates the conversion of alanine, lactate and pyruvate to glucose by the 

isolated perfused rat liver with a concomitant rise of urea formation (Curry and Beaton, 

1958). Recently, however, the extrapolation of GPT activity from rat to dog has been 

questioned. Glutamate-pyruvate transaminase activity is 7 times lower, and alanine 

production from lactate, pyruvate and glutamate is 3 times lower in rat kidney than in dog 

kidney (Lemieux et ai., 1988). 

Exercise training has been correlated with increased muscle and plasma GPT 

activity in men (Felig and Wahren, 1971b; Vukovich et al., 1992), rats (Mole et al., 1973), 

greyhounds (Ilkiw et al., 1989) and sled dogs (Hammel et al., 1977). The time it takes to 

see an elevated plasma GPT from exercise is controversial, however. Hammel et al. 

(1977) claims a plasma GPT increase within 30 minutes after exhaustive exercise, but 

Nosaka et al. (1992) states that plasma GPT does not increase immediately in peripheral 

blood after strenuous exercise because 24 to 48 hours are usually required for muscle 

protein release from damaged muscle fibers. Ilkiw et al. (1989) is in agreement with 
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Hammel and reports that immediately after racing, plasma concentrations of GPT, lactate 

dehydrogenase, lactic acid, and glucose were elevated, bicarbonate and pH were decreased 

and urea concentrations were unchanged in greyhound plasma. In this study all parameters 

had returned to baseline by three hours post-racing. The increased GPT was hypothesized 

to be caused by decreased splanchnic blood flow, which may occur in greyhounds because 

of extreme exercise intensity during racing, although decreased splanchnic flow in 

exercising dogs has not been reported in the literature. How decreased splanchnic flow 

could cause an increase in GPT was not theorized in Ilkiw's study, however, but most 

likely was a result of hepatic anoxia. Plasma GPT activity, therefore, is not as accurate as 

muscle GPT activity in indicating glycolytic potential of skeletal muscle. 

It has been postulated that metabolic regulation during acute exercise may be 

controlled by the turnover rate of enzymes involved in energy production (Ji et al., 1985). 

The altered enzyme concentrations may affect flux through various metabolic pathways. In 

Ji's study, alanine aminotransferase and aspartate aminotransferase both increased in 

resting samples from trained individuals indicating exercise adaptation. In addition, both 

activities decreased immediately post-exercise indicating increased flux. 

Phosphofructokinase Phosphofructokinase (PFK) is the rate-limiting enzyme 

of glycolysis during initial 30 second bursts of energy, but phosphorylase seems to be rate-

limiting in successive bouts (McCartney et al., 1986). Because PFK is sensitive to shifts in 

pH (Halperin et al., 1969; Ui, 1966; Trivedi and Danforth, 1966), the drop in pH that 

occurs within the first 30-60 seconds of maximal exercise may be enough to inhibit PFK. 

However, with sprint training, PFK levels can increase (Troup et al., 1986), although an 

interruption in training, up to 7 weeks, does not seem to affect PFK activities, at least in 

humans (Simoneau et al., 1987). 

Citrate synthase Citrate synthase (CS) is a key enzyme involved in the citric 

acid cycle and its activity parallels tissue respiratory capacity. Mitochondrial content of 
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exercised muscle, which is indicative of aerobic-oxidative potential, is important in 

determining substrate utilization during exercise. Exercise training results in increased CS 

activity in skeletal muscle of rats at 75% maximal oxygen consumption (Gosselin et al., 

1992), at 90-95% maximal oxygen consumption (Powers et al., 1992), at maximal oxygen 

consumption (Moore et al., 1987) after 8 weeks of submaximal endurance training (Dohm 

et al., 1973) and when exercised to exhaustion after 13 weeks of training (Pitts et al., 

1975). In men, 12 weeks of training increased resting muscle CS activity but not post-

exercise CS activity (Coggan et al., 1991). The time course of changes in CS activity is 

controversial. Exercising to exhaustion, either after 8 weeks of submaximal endurance 

training or in untrained muscle, did not alter CS activity in rats in one study (Dohm, et. al., 

1973); however, another study reported immediate post-exercise changes after 8 weeks of 

training (Ji et al., 1985). The increase in CS activity is directly correlated with intensity of 

training (Kirwan et al., 1990; Melichna et al., 1987; Pitts et al., 1975); maximal exercise, 

however, can actually inhibit mitochondrial respiration because of proton accumulation 

(Witt et al., 1987). The training pattern is important in maximizing oxidative potential of 

muscle. Continuous training is more effective at increasing oxidative capacity of skeletal 

muscle, as represented by increased CS activity than is interval training even when exercise 

intensity is equal between groups (Gorostiaga et al., 1991). 

The training-induced increases in CS, malate dehydrogenase and GPT activities 

appears to be related to beta 2-adrenergic mechanisms (Ji et al., 1986). Down regulation, 

or enzyme activity suppression, of CS, malate dehydrogenase and GPT activities occurs in 

rats after a single bout of acute or exhaustive treadmill running and may be due to peroxides 

and oxygen free radicals produced in prolonged exercise, which alter the redox state of 

mitochondria (Ji et al., 1988). Training may enhance resistance to these oxygen species by 

increasing activity of glutathione peroxidase. 
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Type of training can affect skeletal muscle substrate utilization. Continuous training 

is more effective in increasing oxidative potential as determined by increased enzyme 

activities and in decreasing lactic acid build-up in vastus lateralis muscle in men; however, 

interval tiaining is more effective in increasing maximal oxygen consumption and overall 

exercise capacity as determined by exercising work rates and power output (Gorostiaga et 

al., 1991). Tapering workouts has some beneficial effects also. When cyclists were rested 

4- or 8- days in an exercise taper study, muscle glycogen concentration increased along 

with power output compared with that of those who exercised continuously (Neary et al., 

1992). Increased training volume (30 m*min"l at 6 degrees incline for up to 360 min'day" 

1), which correlates to 6 times the normal rate used in a study by Kirwan et al. (1990) 

resulted in increased liver glycogen but no change in muscle glycogen. 

Endurance training causes a functional increase in CS activity in horses (Hodgson 

and Rose, 1987; Hodgson et al., 1985; Guy and Snow 1977), humans (Holloszy, 1967; 

Essen-Gustavsson and Henriksson, 1984) and rats (Fitts et al., 1975). Oxidative 

adaptability can affect other fiber types as well. Sprint training in rats caused increased CS 

activity in both fast- and slow-twitch skeletal muscle (Troup, et. al., 1986). Endurance-

trained humans had significantly higher CS activity in all fiber types than did non-

endurance trained controls (Essen-Gustavsson and Henriksson, 1984). Increased CS 

activity may be correlated with an increase in fatty acid synthesis also seen in endurance 

trained subjects. Pette et al. (1973) conducted an in vivo muscle stimulation trial in rabbits 

that showed sequential changes in enzyme activities. For 28 days, a slow-twitch pattern of 

stimulation was administered to rabbit fast-twitch muscle. This stimulation caused large 

initial increases in muscle enzyme activities of fatty acid activation at 4 days, followed by 

increases in glycogenolytic and glycolytic enzymes at 14 days, and lastly increases in CS 

and enzymes involved in fatty acid oxidation at 28 days. 
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Detraining effects on oxidative enzyme capacity seems related to duration of rest. 

In humans, detraining, as produced by 3 weeks of inactivity after 7 weeks of intense 

endurance exercise, caused a decrease in CS activity (Moore et al., 1987), but tapering 

exercise, by resting either 4- or 8- days, did not affect CS activity (Neary et al., 1992). 

Citrate synthase activity is inversely proportional to the percentage of total energy 

derived from glucose oxidation in vastus lateralis muscle of men (Coggan et al. 1992). 

This conclusion that CS activity is higher in fibers that depend on oxidative metabolism 

rather than glycolytic metabolism seems logical if the premise that CS activity is a marker 

for oxidative potential in skeletal muscle is to be believed. Only muscles with an increased 

CS activity will show an increased insulin-stimulated glucose transport in rats (Cortez et 

al., 1991) and that may contribute to muscle recovery ability. Citrate synthase activity has 

been positively correlated with muscle recovery ability (Jansson et al., 1990) and may be 

related to potentiation of CS synthesis in low ADP states (Atkinson, 1968). This 

relationship is further illustrated in a study by Jansson et al. (1990) that showed peak 

torque is higher after recovery in men whose skeletal muscle has elevated CS activity, 

decreased lactate concentration, and higher creatine phosphate concentration than in men 

who did not have similar oxidative potential in their skeletal muscle (Jansson et al., 1990). 

Such torque was measured by an isokinetic device that monitored unilateral knee 

extensions, and was thought to accurately determine muscle power. 

Dietary effects on citrate syntliase activity 

Most of what has been reported in the literature regarding the effect of diet on CS 

activity focuses on how dietary fat composition alters activity (Risse and Dargel, 1978; 

Risse et al., 1976; Guimaraes and Curi, 1991; Simi et al., 1991; Miller et al., 1984; 

Miller et al., 1983; Guimaraes et al., 1990). 
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Dietary effects on CS activity have been studied extensively in rats. Citrate 

synthase activity decreases in rat skin if a diet low in both energy and protein is fed, but 

recovery to control activities occurs after one week of normal diet replacement (Nguyen and 

Keast, 1991). A high fat diet containing 25% fat increased CS activity and decreased 

lactate and pyruvate concentrations in rat livers (Risse and Dargel, 1978; Risse et al., 1976) 

and skeletal muscle (Simi et al., 1991). The correlation between CS activity and fat content 

in the diet was apparent whether diet was changed from high fat to low fat or vice versa. 

The high-fat diet-induced effects are additive with the well-established training effect of CS 

activity. Neither high fat nor high carbohydrate diets affected citric acid cycle activities in 

trained rested or untrained rested rats (Dohm et ai., 1973). A high-fat, low carbohydrate 

diet fed to male rats increased muscle CS activity 15-20% (Miller et al., 1984). Evidently, 

a high fat diet causes muscle to increase its ability to oxidize fat and therefore spare 

glycogen. Although a low carbohydrate diet increased CS activity in heart and soleus 

muscle of rats (Haddad et al., 1990), in actuality the diet used in that study may have had a 

high percentage of calories contributed by fat. The effect of high fat diets on CS activity 

may be species specific. Four weeks of a high-fat (54% of energy)-high carbohydrate diet 

or a lower fat (29% of energy)-high-carbohydrate diet did not affect CS activity in plasma 

or muscle of trained men (Kiens et al., 1987). 

Dietary fat can modulate CS activity in tissues other than muscle. A high fat diet 

has been associated with decreased immune response in rats, which is correlated with CS 

activity of lymphoid tissue. When rats are fed an omega-3 polyunsaturated fatty acid-rich 

diet for 6 weeks CS activity decreased in the spleen and lymph nodes, but increased in the 

thymus (Guimaraes and Curi, 1991). 
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Substrates and pathways involved in exercise-induced gluconeogenesis 

Gluconeogenesis Gluconeogenesis is the formation of glucose from non-

carbohydrate sources. Among such sources are amino acids, lactate and pyruvate. The 

rates of gluconeogenesis in the perfused rat liver are high for alanine, lactate and pyruvate 

but unexpectedly low for most other amino acids, particularly glutamate and aspartate 

(Ross et al., 1967). The rate of conversion of lactate to glucose requires an average of 75 

seconds when determined by injection of a pulse of radiolabeled lactate into a rat liver 

perfused for 20 minutes with lOmM lactate (Exton and Park, 1967). The rate-limiting 

factor seems to be the ability of precursors to penetrate into the cell where gluconeogenesis 

can occur (Ross et al., 1967). There may be species variation in transporters of 

gluconeogenic substrates. Based on literature values for hepatic uptake of glutamine and 

alanine, coupled with the fact that glutamine is produced in quantities twice that of alanine 

in isolated pup hepatocyctes, it has been theorized that glutamine is the main nitrogen and 

carbon transporter from muscle to liver for gluconeogenesis in dogs (Martin and Baverel, 

1983). This is in contrast to rats where alanine is the main gluconeogenic transporter. 

There is an increased gluconeogenic stimulus evoked by exercise. Glucose 

production from alanine increases with exercise because of increased hepatic extraction of 

alanine and increased intrahepatic conversion of alanine into glucose (Wasserman et al., 

1988). The increase in gluconeogenesis continues into recovery primarily because alanine 

release from muscle continues to rise after exercise (Wahren et al., 1973). The protein 

catabolism observed during exercise, independent of caloric deficit (Mole and Johnson, 

1971), may be partially the result of this outflow of alanine from exercised skeletal muscle, 

which suggests increased activity of the alanine-glucose cycle post-exercise (Wahren et al., 

1973). 

To establish gluconeogenic substrate utilization across any organ, the arterial-

venous (A-V) difference technique is commonly employed (Fine, 1983; Felig and Wahren, 
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1971; Schulman et al., 1980; Wahren et al., 1973). This technique is based on the Pick 

principle which states that the difference between the arterial and venous concentrations of a 

compound multiplied by the blood flow of any tissue or organ with a single blood supply 

and drainage determines utilization or release of that compound (Ganong, 1985). 

Alanine Alanine is a key integrator of metabolism. Alanine release from resting 

muscle is greater than that of all other amino acids in humans (London et al., 1965). Its 

primary regulatory role in gluconeogenesis, postulated as the alanine-glucose cycle, is well 

established in the literature (Felig et al., 1969; Felig, 1973; Felig and Wahren, 1971; Felig 

and Wahren, 1971b; Wahren et al., 1973; Elia et al., 1984). An overview of the cycle 

follows. Alanine, produced from the transamination of pyruvate from glutamate within 

muscle, diffuses into the blood where it is transported to the liver. Within the liver, alanine 

is transaminated back to pyruvate, which then reforms glucose. The amino group is 

eliminated as urea. The reformed glucose diffuses into the blood where it is transported 

back to muscle to serve as substrate in glycolysis. 

Alanine production is not limited to skeletal muscle. Branched-chain amino acids 

(BCAA) are catabolized in intestinal tissue to produce alanine that is preferentially utilized 

by liver, along with glycine during the post-absorptive period, to provide carbon skeletons 

for gluconeogenesis (Barrett et al., 1986). Ingested amino acids are the major source of the 

absorbed amino acids following an amino acid load in dogs rather than digested 

endogenous protein. Ingested amino acids have similar effects in rats. Plasma BCAA 

remained elevated in rats fed a high protein diet (Anderson et al., 1967) and may contribute 

to protein sparing of muscle. Muscle amino acid release is the primary method of 

controlling resting arterial amino acid concentrations in the post-absorptive state, however 

(Pozefsky et al., 1969). 

Glucose cycling does not increase net gain of glucose and seems to maintain a 

constant percentage of glucose recycling, regardless of activity or need (Weber et al.. 



www.manaraa.com

1 4  

1990). The alanine-glucose cycle, therefore, has little role in regulating glucose flux, but 

may be more important in removing nitrogenous waste and in averting pyruvate away from 

lactate production. Originally, glucose and amino acids were thought to be equally 

important as sources of pyruvate to fuel the alanine-glucose cycle (Felig et al., 1969; 

Garber et al., 1976), but glucose is now thought to be the major source of pyruvate in 

alanine synthesis (Chang and Goldberg, 1977; Waterhouse and Keilson, 1978). Using the 

Lg line of skeletal muscle cells, a cell line shown to be suitable for studying carbohydrate 

and amino acid metabolism, alanine production was determined to be a function of pyruvate 

overflow (Pardridge and Davidson, 1979). Although a direct correlation between alanine 

production and glucose utilization could not be established, it was concluded that the rate of 

alanine production is positively correlated with lactate production and dependent on a 

critical level of pyruvate concentration within a cell. This relationship between lactate and 

alanine production may indicate that alanine production is sensitive to acid -base balance 

more than simply to glucose utilization. 

Alanine transport into liver cells is rate-limiting for its metabolism (Sips et al., 

1980) and is increased in diabetic rats, but the mechanism is unknown (Rosenthal et al., 

1985). Sodium-dependent transport does not seem to be involved, however. There is a 

direct correlation with glucagon, insulin (Cherrington 1981; Chiasson et al., 1975; Davis et 

al., 1985; Sestoft et al., 1977), catecholamine (Cherrington, 1981) and alanine load to the 

liver (Diamond et al., 1988; Sestoft et al., 1977) on hepatic alanine uptake. Some 

researchers believe the gluconeogenic effect of glucagon is by shunting more alanine 

already present in the liver toward new glucose formation rather than by increasing the 

amount of alanine extracted from the plasma into the liver, however (Chiasson et al., 

1975). The gluconeogenic effect of Cortisol operates by this mechanism (Goldstein et al., 

1992). Increased alanine load to the liver can occur experimentally because of infusion 
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(Diamond et al., 1988) or naturally from exercise (Felig and Wahren, 1971; Mole et al., 

1973; Peso et al., 1987). 

Plasma and liver alanine concentrations have been inversely correlated with the state 

of gluconeogenesis in rats (Paleologos et al., 1968). This correlation is further illustrated 

by the attenuation of gluconeogenesis in prolonged fasting by decreased plasma alanine 

(Marliss et al., 1971). Further support is offered by a human study where plasma alanine 

concentrations were inversely proportional to changes in dietary energy, and corresponding 

alanine flux and de novo synthesis were inversely proportional to protein intake (Yang et 

ai., 1986). Therefore, it seems gluconeogenesis is triggered when energy is low causing 

alanine to be produced and quickly removed from the circulation by the liver for 

tranformation into needed glucose. An increased need for gluconeogenesis is found in 

trauma situations also, but the increased alanine turnover is coupled with decreased plasma 

alanine and results in protein loss or wasting (Marliss et al., 1971). Cortisol is a likely 

factor in this flux contributing to protein utilization for glucose production rather than for 

tissue rebuilding. 

In insulin-independent diabetic men, the post-exertional alanine increase normally 

associated with exercise is decreased and lactacidemia is increased when insulin is 

administered prior to ergometer workout (Czyzyk et al., 1989). This phenomenon 

illustrates the gluconeogenic role of alanine. As glucose is transported into cells by the 

action of insulin hypoglycemia results, thus causing alanine to be taken up by the liver at a 

greater rate for gluconeogenesis in an attempt to increase circulating glucose. 

The idea of maximizing potential of the alanine-glucose cycle has been attempted 

commercially and a diet that is high in BCAA has been patented for humans (Brantman, 

1987). The theory of this supplementation is that increased BCAA in the diet will increase 

glutamate production within skeletal muscle from a transamination reaction and, in another 

transamination with pyruvate, will produce alanine instead of lactate, thereby increasing 
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proton flux from muscle. Dietary supplementation with branched-chain amino acids during 

exercise has been speculated to prevent or decrease the net rate of protein degradation 

caused by endurance exercise (Blomstrand and Newsholme, 1992). This speculation is 

based on the observation that with BCAA supplements plasma and muscle concentrations 

of BCAA were elevated in subjects whereas the aromatic amino acids decreased. The 

aromatic amino acids are not metabolized, and therefore, are an indicator of muscle protein 

degradation. Oral administration of 25 g L-alpha-alanine to resting men, fasted overnight, 

has shown stimulation of the alanine-glucose cycle in both athletes and nonathletes, but the 

effect was significantly greater in the athletes three hours after oral dosing (Kita et al., 

1990). Athletes had lower plasma alanine concentrations and increased glucose and 

pyruvate concentrations compared with non-athletes at three hours post-alanine dosing. 

The alanine was most likely being metabolized in the liver to glucose, thus decreasing 

circulating concentrations. Other approaches to dietary manipulation of muscle metabolism 

have been made. Increased BCAA metabolism has been correlated with increased ammonia 

production, and therefore, speculation was made that increased carbohydrate availability 

would be more beneficial to an athlete because it would decrease ammonia production that 

can be toxic (Graham and MacLean, 1992). Of interest is that exercise lessens the muscle 

protein breakdown common in renal insufficiency and is correlated with a decrease in 

muscle alanine release in uremic rats (Davis et al., 1985). Although the mechanism is 

unknown, this decrease in muscle protein catabolism may indicate a feedback control in 

uremic patients as an attempt to decrease ammonia production by BCAA metabolism. 

The kidney is another site of alanine metabolism and helps to maintain plasma 

alanine homeostasis. At normal plasma alanine concentrations, the kidney produces alanine 

as a substrate for gluconeogenesis more than it utilizes alanine in ammonia formation. 

When plasma alanine concentration is elevated, such as with exercise, the reverse is true 

and ammonia produced from skeletal muscle metabolism is excreted (Pitts and Stone, 
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1966). Alanine protects rabbit kidney proximal tubules against anoxic injury in vitro 

(Garza-Quintero et al., 1990). Although the mechanism is unknown, research has 

determined that tubule protection is not attributed to ATP preservation as originally 

speculated, but rather the observed ATP elevation in protected tubules may be a result of 

cell protection instead. Earlier work with glycine, which is structurally similar to alanine, 

showed protection against anoxic injury also (Weinberg et al., 1987). The protective 

mechanism of glycine is also unknown but is independent of tubule cell ATP preservation 

as well and to changes in glutathione metabolism (Weinberg et al., 1989). 

Alanine exerts a hypoketonemic effect in rats. The mechanism may be attributed to 

altering the redox equilibrium of the liver from the mitochondria to the cytosol, thus 

decreasing the ability of cells to reduce acetoacetate to 3-hydroxybutyrate, which typically 

occurs in the mitochondria (Pinar et al., 1977). An alternate possibility suggests that the 

antiketogenic effect is secondary to an increase in hepatic oxaloacetate formation resulting 

in increased citrate formation and therefore decreased availability of acetyl-CoA for 

ketogenesis (Nosadini et al., 1980). Whether this is similar in dogs is not known; dogs, 

however are known to be resistant to ketogenesis. In general, alanine production and flux 

through the alanine-glucose cycle is increased with exercise. 

Leucine Leucine flux is a measure of protein turnover in the body (Carraro et al., 

1990; Millward et al., 1982; Mole and Johnson, 1969; Picou and Taylor-Roberts, 1969; 

Rennie et al., 1981; Stein et al., 1989). Recommended dietary intake of leucine in humans 

has been challenged as inadequate based on research that shows measured whole-body 

leucine catabolism to be greater than that recommended for replacement; therefore, dietary 

supplementation of BCAA may be warranted (Hood and Terjung, 1990). It is likely that 

the erroneous leucine recommendation in humans occurred because it was based on data in 

rats, which may not be directly extrapolated to other species. 
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Exercise decreases whole-body incorporation of leucine into protein in humans 

suggesting a decreased amount of protein synthesis during exercise (Rennie and Edwards 

et al., 1981; Rennie and Halliday et al., 1981; Hagg et al., 1982). Exercise effects on 

protein degradation are not as well established, however. Exercise has been suggested to 

increase protein degradation (Dohm et al., 1985; Rennie and Edwards et al., 1981; Wolfe 

et al., 1981), decrease protein degradation (Rennie and Halliday et al., 1981) or not affect 

protein degradation (Evans et al., 1981). Acute exercise in trained and untrained rats 

caused a decrease in protein synthesis but did not affect protein degradation (Davis and 

Karl, 1986). 

Exercise increases lactate, pyruvate and alanine release from skeletal muscle in man 

unless 200 g of glucose is administered prior to workout (Ahlborg and Bjorkman, 1987). 

This observation would verify that lactate, pyruvate and alanine are released from skeletal 

muscle when glucose uptake by skeletal muscle is inadequate. Leucine degradation 

decreases pyruvate oxidation in cardiac and skeletal muscle and adipose tissue (Tischler and 

Goldberg, 1980). Evidently, leucine acts as a fuel in the fasted state by undergoing 

transamination and thereby sparing glucose oxidation. The acetyl-CoA produced from 

leucine degradation is comparable with the acetyl-CoA lost from decreasing pyruvate 

oxidation, and so energy production remains the same. 

Glutamate Glutamate, the source of amino groups for alanine production, is 

formed within muscle from a transamination reaction involving alpha-ketoglutarate and the 

BCAA, valine, leucine, and isoleucine. Glutamate also acts as a substrate for glutamine 

production in muscle in another transamination reaction, and therefore, is a source of 

eliminating nitrogenous waste in a similar capacity as alanine because the glutamine is 

subsequently removed by the splanchnic bed and kidney (Marliss et al., 1971). There are 

conflicting reports examining the effect of stress on glutamate/glutamine concentrations in 

rats. Stress was shown to regulate muscle amino acid transport during exercise and result 
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in increased glutamine and glutamate in epitrochlearis muscle in rats (Nie et ai., 1989). 

Contrastingly, both glutamate and glutamine were decreased in liver, skeletal muscle, and 

kidney of rats during acute exercise and was contributed to enhanced glutaminase activity 

resulting from acidosis (Christophe et al., 1971) 

Glycine The diffusion of glycine from plasma to muscle is impaired by a 

permeability barrier but can the amount of glycine transported into muscle can be increased 

with higher blood flow (Henriques et ai., 1955). Glycine is elevated in plasma in 2-week 

starved and isocaloric protein-deprived humans and is thought to be caused by a decrease in 

nucleic acid synthesis, which requires glycine as a substrate (Adibi, 1968). In 5 to 6 week 

starved humans, glycine utilization in kidney increases, along with increased alanine 

production, and is thought to be secondary to increased renal gluconeogenesis (Felig et al., 

1969). 

Exercise effects on alanine and the branched-chain amino acids 

The relationship between protein metabolism and energy production during exercise 

is of great interest to the scientific world as evidenced by numerous review articles written 

(Henrikkson, 1991; Dohm et ai., 1985; Viru, 1987; Brooks, 1987). During exercise, 

carbohydrate and free fatty acids are the major energy sources, but some amino acids also 

contribute to energy requirements. Because protein synthesis is depressed during exercise, 

amino acids are available for catabolic processes (Dohm et al., 1985). The BCAA (Lemon 

and Nagle, 1981) and alanine (Favier et al., 1987) are deemed the most important amino 

acids which contribute to exercise energy because of their activity in the alanine-glucose 

cycle. 

There is disagreement on the fate of alanine in exercised muscle, and it may be 

species related. Alanine decreases in muscle and plasma in rats when exercised (Dohm et 

ai., 1981), but, in humans, alanine release from exercised muscle increases proportionately 
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with intensity and is directly correlated with arterial pyruvate concentration (Felig and 

Wahren, 1971; Felig and Wahren, 1971b). In humans after ergometer exercise, forearm 

alanine and lactate release doubled 2 hours post-exercise and BCAA concentrations 

increased coincident with increased forearm uptake (Devlin et al., 1989). In rats, the 

BCAA are generally elevated by exercise (Dohm et al., 1981). There is general agreement 

that prolonged exercise increases gluconeogenesis from alanine (Wasserman et al., 1988; 

Dohm et al., 1985; Ahlborg and Felig, 1976; Lemon and Nagle, 1981; Dohm et al., 1981; 

Galbo et al., 1977). Few references are available evaluating the alanine-glucose cycle in 

short-term, maximal exercise. The alanine-glucose cycle is important in short-term 

exercise, however, as a means of gluconeogenesis and nitrogenous waste removal 

(Henrikkson, 1991). The potential of the alanine-glucose cycle in decreasing lactate build

up in exercising muscle was postulated by Felig and Wahren (1971b) when they estimated 

that conversion of pyruvate to alanine occurs at 35-60% of the lactate formation rate in 

human leg muscle undergoing strenuous, submaximal exercise. Christophe et al. (1971) 

determined that exercise had no effect on plasma alanine or BCAA concentrations, but their 

sampling method involved peripheral blood collection after decapitation and their rat 

subjects were varied in their physical fitness abilities and body compositions. Christophe's 

conclusions , therefore, are questionable. 

There seems to be significant differences between trained and untrained individuals 

in metabolic and hormonal responses to exercise (Bloom et al., 1976). In trained men, 

glucose, glycerol and free fatty acids in plasma were higher, while, lactate, pyruvate, 

alanine and catecholamines in plasma were lower during exercise than in plasma from 

untrained men. Resting BCAA concentrations and post-exercise alanine concentrations 

were higher in trained athletes (Einspahr and Tharp, 1989). Knowing BCAA are 

precursors for alanine production, it was postulated that the higher post-exercise alanine 

concentrations in endurance-trained athletes may develop to accommodate metabolic 
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demands of exercise such as acidosis and ammonia accumulation. When comparing the 

relationship between glucose and alanine metabolism in Japanese athletes, it was found that 

the increase in plasma alanine is the same between trained and untrained men during 

exercise, but the athletes had a higher plasma glucose concentration and lower circulating 

lactate during exercise than did untrained men. This difference may be attributed to 

enhanced alanine-glucose cycle activity in trained subjects. In trained rats, ratios of BCAA 

to their branched-chain keto acids were dramatically lowered by exercise (Ji et al., 1987), 

indicating increased conversion of the BCAA to their alpha-keto form, thus increasing the 

supply of substrate for the alanine-glucose cycle. 

Alanine formation is not limited to exercise, but occurs in any hypoxic/anoxic 

situation (Dohm et al., 1985) even in cold-blooded animals (Carlsson and Gaede, 1986; 

Lallier and Walsh, 1992; Meinardus-Hager and Gade, 1986) where the pathway is 

speculated to be similar to mammalian alanine-glucose cycling between skeletal muscle and 

liver utilizing GPT and glutamate dehydrogenase. Alanine also increases in femoral blood 

in patients with peripheral arterial occlusive disease whose affected muscles depend on 

anaerobic energy production to a larger degree than do unaffected people (Rexroth et al., 

1989). Thus, alanine formation is correlated with anaerobic conditions, which could 

potentially result in lactate production. 

Effect of diet on the alanine-glucose cycle 

In the postabsorptive state, skeletal muscle is the main source of plasma alanine and 

lactate, although diet can affect substrates and enzyme activities that regulate flux rates 

through the alanine-glucose cycle (Consoli et al., 1990). As previously stated, de novo 

synthesis of alanine increases when protein intake is restricted and changes proportionately 

with dietary energy from carbohydrate (Yang et ai., 1986). Protein supplementation in 

exercised humans has been associated with decreased lactate formation and increased GPT 
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and is thought to reflect increased transamination of pyruvate, resulting in decreased lactate 

accumulation (Vukovich et al., 1992). Dietary protein supplementation has been associated 

with decreased activity of the first of three reactions common to BCAA catabolism, which 

is the transaminase reaction that converts BCAA into their alpha-keto acids (Exton and 

Park, 1967). The same protein supplementation, however, increased activity of those 

enzymes that control the second and third common reactions in BCAA catabolism, which 

are the BCAA alpha-keto acid dehydrogenase and BCAA acyl-CoA thioester 

dehydrogenase. 

In exercised humans, a low carbohydrate (3%), high fat (73%), high protein (24%) 

diet induces metabolic acidosis immediately pre-exercise (Greenhaff et al., 1988). This 

same diet caused lower plasma alanine and glutamine concentrations and lower blood 

lactate concentrations immediately prior to exercise, which may signify an increased 

removal of alanine, glutamine and lactate by the liver and, thus increased gluconeogenic 

potential. Evidently, the high protein, high fat diet decreases pre-exercise muscle buffering 

capacity. When men fed this diet were exercised, a 104% greater decrease in muscle pH 

occurred compared with results of another group of men who were fed a high 

carbohydrate, low fat, low protein diet. In addition, the high carbohydrate, low fat, low 

protein diet increased muscle glycogen content by 23% in men fed this diet and, when 

exercised, their muscle glutamine was 17% lower than concentrations in men fed the high 

fat, high protein diet. 

Acid-base influence on gluconeogenic substrates 

Acid-base balance can regulate alanine-related energy metabolism. Diet (Patience, 

1989) and exercise can affect acid-base balance. Although acidosis is typically associated 

with the exercised state, alkalosis from ammonia production does occur simultaneously. 

Ammonia production within skeletal muscle occurs via the purine nucleotide cycle 
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(Goodman and Lowenstein, 1977; Lowenstein and Goodman, 1978; Graham and 

MacLean, 1992). Blood ammonia concentration is directly correlated with blood lactate 

concentrations (Itoh and Ohkuwa, 1991) because, with acidosis, waste nitrogen is diverted 

from the excretion of urea to ammonia (Cersosimo et al., 1986; Oliver and Bourke, 1975). 

The bicarbonate buffering system has been hypothesized to almost entirely neutralize the 

lactic acid produced from exercise (Beaver et al., 1986), but the ammonia produced may be 

cleared ultimately by the alanine-glucose cycle. Plasma alanine elevation is important in 

transporting ammonia and carbon skeletons out of muscle tissue in racehorses (Poso et al., 

1987). This was concluded because plasma alanine remained elevated whereas lactate, 

pyruvate and glucose concentration decreased post-exercise. This concept is supported by 

a study in humans that showed that, during isometric contraction of the quadriceps femoris 

muscle, muscle ammonia, lactate, and alanine increased significantly (Katz et al., 1986). 

During exercise recovery, however, ammonia concentrations remained elevated whereas 

alanine increased and glutamate and lactate decreased. This substrate pattern can be 

explained by branched-chain amino acid metabolism that utilizes glutamate to produce 

alanine and produces ammonia as a by-product. It is hypothesized that increasing 

carbohydrate availability may suppress ammonia accumulation by decreasing the need for 

BCAA metabolism (Graham and MacLean, 1992). 

Ammonia accumulation occurs only during strenuous exercise and seems to be of 

minor importance in regulating acid-base balance in body fluids during exercise (Katz et 

al., 1986); however, acid-base balance does seem to strongly influence alanine 

metabolism. Elevated ammonia concentration in human quadriceps femoris muscle caused 

a decrease in glutamate, an increase in alanine (Katz et al., 1986) and increased deamination 

of that alanine (Bhonensack and Fritz, 1991). At physiological concentrations, ammonia 

stimulated gluconeogenesis in perfused rat liver also (Fritz and Bohnensack, 1988). 
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Hyperthermia, also associated with exercise, results in increased plasma ammonia 

and glutamate concentrations as well as an uptake of glutamine and alanine by skeletal 

muscle, thus indicating a nitrogen-sparing effect (Jacob et al., 1989). There seems to be no 

increase in ammonia accumulation up to 50% VO2 max, but a threefold increase occurs up 

to maximal exertion (Babi et al., 1983). In Babi's study, ammonia increased concomitantly 

with lactate and blood glutamine and alanine rose linearly with power output. A linear 

regression has also been demonstrated between ammonia, lactate and alanine concentrations 

both at rest and during exercise (Eriksson et al., 1985). It was concluded that the ammonia 

formed during exercise is primarily from muscle and is used in the synthesis of glutamine 

and probably alanine. The alanine-glucose cycle would, indeed, unite activities of these 

metabolites and provide a nontoxic alternative to ammonia production (Felig and Wahren, 

1976). As exercise work increases, ammonia and lactate production increases. The 

formation and release of ammonia provides additional nitrogen for alanine production. The 

augmented alanine production results in decreased lactate accumulation. Glutamine is 

important in removal of that ammonia and can also provide nitrogen for alanine production 

(Matsutaka et al., 1973). 

Conditioning can affect lactate and ammonia metabolism. When male sprinters 

were compared to long-distance runners in a study that measured plasma ammonia 

concentrations at 50%-, 75%-, 100%- and supra-maximal heart rates, peak concentrations 

were greatest at supramaximal exertion in the sprinters, but only at maximal exertion with 

endurance runners (Itoh and Ohkuwa, 1990). Sprinters in this study produced higher 

ammonia concentrations than long-distance runners at the same exertion level also. 

Improvement in sprint performance in humans is accompanied by an increase in post-

exercise muscle lactate, suggesting improved ability to produce and withstand a lower pH 

in trained athletes (Nevill et al., 1989). This capacity may be explained by the increased 

muscle buffering capacity that occurs with sprint training in humans (Sharp et al., 1986). 
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However, in conditioned horses run on a treadmill, blood lactate and plasma ammonia 

concentrations were significantly decreased post-exercise, when compared with that of the 

same horses tested previously in an unconditioned state (Miller and Lawrence, 1986). It 

was not clear if these measurements were taken immediately after exercise or after one hour 

of recovery. If samples were taken immediately post-exercise, then either the horses were 

not truly run at maximal exertion or horses respond differently than humans. If samples 

were taken one hour post-exercise, then the importance of improved metabolite clearance in 

conditioned horses becomes a factor. In this case, the alanine-glucose shuttle may be 

regarded as central to ammonia and lactate removal from exercising muscle because degree 

of acidosis can be a factor in stimulating the alanine-glucose cycle. Indeed, alanine and 

amino-N release by muscle does increase in acidosis in the dog (Fine, 1983). It seems that 

the accumulation of hydrogen ions caused by muscular work inhibits glycolysis at the 

reaction catalyzed by PFK (Sahlin et al., 1981) and may thus stimulate gluconeogenic 

cycles to maintain glucose homeostasis. Because the alanine-glucose cycle is also a 

nitrogen removal cycle (Felig and Wahren, 1975; Poso et al., 1987), the ammonia can be 

removed. Severe acidosis appears to be the stimulant, however, because stable, moderate 

acidosis and alkalosis has little effect on glucose and lactate kinetics and gluconeogenesis 

from lactate, at least in normal and diabetic dogs (Hetenyi et al., 1987). 

Thermodilution method of blood flow determination 

Blood flow determination is required in many research and clinical settings. 

Although several methods are available, indicator dilution methods of determining blood 

flow have been widely used. This technique involves injecting a known amount of 

indicator into a vessel and determining the indicator concentration in timed serial samples 

collected a distance away. Common indicator choices such as dye (Wahren, 1966; Rowell 

et ai., 1964; Zierler, 1961; Andres et al., 1953) or radioiodinated human serum albumin 
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(Hobbs et al., 1962) were limiting because of indicator recirculation that made repeated 

determinations difficult, if not impossible. Para-amino hippuric acid is an endogenous 

indicator that has been successfully used, but a constant infusion is needed (Katz and 

Bergman, 1969; Roe et al., 1966). The search for an endogenous indicator that would not 

recirculate and could be injected as a bolus led to the thermodilution technique first 

described in determination of cardiac output in 1954 by Fegler. This method requires 

saline to be injected intravenously at a temperature different from body temperature. The 

temperature difference can be recorded by a thermistor previously placed in the blood 

stream. Blood flow is then inversely proportional to the area under the thermodilution 

curve. 

In 1960, local blood flow by thermodilution was described by Fronek and Ganz 

and was later applied to the femoral artery of man (Ganz et al., 1964). Thermal indicators 

chosen were either 5 % glucose.or physiological saline at 18-22 degrees C. The technique 

was further modified in 1985 when ice-cold physiological saline was used as the thermal 

indicator to determine cardiac output in dogs (Pendergast et al., 1985). The thermodilution 

method has advantages over other methods of blood flow determination in that 

measurements can be repeated 3-4 times per minute and can be performed at rest and during 

exercise. This technique has since been used in conscious humans to determine leg blood 

flow (Jorfeldt and Wahren, 1971; Hlavova et al., 1965), in conscious dogs to determine 

cardiac output (Pendergast et al., 1985) and in unanesthetized rabbits to determine portal 

and renal blood flow (White et al., 1967). Recent accounts of blood flow determinations in 

dogs were performed under anesthesia using a variety of techniques, but each had 

drawbacks. The microsphere technique requires whole muscle removal and, therefore is 

unrepeatable (Musch, 1988). Blood flow determination using an electromagnetic 

flowmeter typically requires a vessel to be cuffed and, therefore impedes physiological 

flow (Ballard et al., 1989). 



www.manaraa.com

2 7  

Most hindleg blood flow determinations in dogs have been measured in the femoral 

artery or vein rather than the intra-abdominal external iliac vessels because of ease of 

accessibility (Hobbs et al., 1962), even though determination of blood flow in the external 

iliac vessels is more representative of entire hindleg flow (Evans and Christiansen, 1979). 

External iliac flow has been accomplished by using a thermostromuhr in conscious dogs 

(Baides et al., 1941; Linton et al., 1941). A thermostromuhr is a resistor that encompasses 

the vessel, heats the blood and records temperature change. The method is similar in 

principle to thermodilution; however, the resistor can restrict vessel diameter. Reported 

flows of 4.8 (Baldes et al., 1941) and 12.0 ml*min"l*kg"l body weight (Linton et al., 

1941) are reported in anesthetized dogs with this method. One report of thermostromuhr 

determination of external iliac arterial flow in a conscious dog indicated a flow of 100-200 

ml/min, considered low by the authors, although a body weight was not given (Linton et 

al., 1941). The dog was given 1/2 grain of morphine to calm him down during the 

procedure, which most likely contributed to the low flow. Fluctuations in blood flow can 

occur because of emotion (Linton et al., 1941) or vascular reaction to catheterization (Con 

et al., 1935), further complicating attempts at blood flow determination in conscious 

animals. 

Hindleg blood flow has been determined with an electromagnetic flowmeter in the 

left, femoral artery and vein of seven anesthetized greyhounds and averaged 18.5 ± 5.0 

ml*min"l*100g"^of hindleg tissue (Ballard et al., 1989). The only other report of canine 

(non-greyhound) hindleg flow using an electromagnetic flowmeter listed flows of 4.0- and 

4.5-ml*min"^*kg'^ body weight. A body weight of 27 kg was associated with the rate of 

4.0-ml*min"l*kg"l body weight. If one assumes a non-greyhound hindleg is 5% of 

bodyweight, calculated from weight tables in the literature (Hobbs et al., 1962), a flow of 7 

ml*min"l*100g'^ hindleg tissue can be calculated. Interestingly, although bone weight and 

volume increase with regular strenuous exercise in rats (Saville and Whyte, 1969) and 
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would, therefore, be expected to do so in dogs, the proportion of greyhound bone to live 

weight is not different than other more sedate dog breeds (Gunn, 1980b). Adult 

greyhounds possess more hindlimb muscle mass than do other breeds of adult dogs 

(Gunn, 1980; Gunn, 1980b), which may contribute to the elevated hindleg blood flow 

rates reported in that breed. The higher blood flows reported in greyhounds may be a 

result of breed difference. Adult greyhounds are hemodynamically different, almost 

hypertensive, and possess lower peripheral resistance compared to mongrel counterparts 

(Cox et al., 1976). 
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ABSTRACT 

The effect of diets on energy related compounds in skeletal muscle was examined in 

15 adult, exercised greyhounds. Group 1 was fed a daily diet comprised of 75:25 (w:w) 

raw beef and a com-soy base dry food that contained 1960 kcal, 169 g protein, and 96 g 

fat. Group 2 was fed a daily diet of 100% com-soy base dry food that contained 1925 

kcal, 139 g protein, and 57 g fat. Group 1 diet was significantly higher in protein and fat 

than the Group 2 diet. Exercise consisted of one 5/16 mile sprint around a track twice a 

week. Glycogen content and enzyme activities of phosphofructokinase, citrate synthase, 

and glutamate-pyruvate transaminase were examined at 0, 8, and 16 weeks in resting 

biceps femoris muscle. Citrate synthase activity in com-soy fed dogs was significantly 

elevated at 8 weeks and was still elevated at 16 weeks (P < 0.06). Activities measured 

were 29.1 ± 4.2|j,mol • min'l • g'^ wwt at 0 weeks, 36.1 ± 5.8 |a,mol • min"l • g"^ wwt at 

8 weeks, and 34.2 ± 4.4 |j,mol • min'^ • g'^ wwt at 16 weeks. Comparable values in the 

meat-mix fed dogs were 27.8 ± 7.3 |imoI • min'^ • g"l wwt at 0 weeks, 27.1 ± 4.6 |J,mol • 

min"l • g"^ wwt at 8 weeks, and 26.5 ± 6.4 jimol • min"^ • g"^ wwt at 16 weeks. No 

other parameters were significantly different within or between diet groups. A corn-soy 

base diet enhanced oxidative potential in greyhound skeletal muscle as evidenced by an 

increase in activity of citrate synthase, but did not alter glycolytic potential. 
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INTRODUCTION 

Raw beef has been an integral part of the racing greyhounds diet throughout the 

history of the breed, The importance of raw beef to greyhound performance is 

advocated by trainers, but questioned by nutritionists. Recent studies have shown that 

dietary raw beef causes an increase in greyhound packed cell volume, red blood cell count, 

and hemoglobin content^ when compared to similar measurements in greyhounds fed a 

com-soy-based diet. This increase is due to dehydration rather than a hematinic effect^. 

The hypothesis that diet can affect the fate of pyruvate in muscle was addressed. 

Specifically questioned was whether dietary raw beef provides a preferential energy 

substrate to greyhound muscle. Greyhound hindleg skeletal muscle is 85 - 100% fast-

twich flbers.^»^ Whether those fibers are strictly glycolytic or actually oxidative- glycolytic 

is controversial.It has been postulated that diet can affect muscle metabolism.9-H A 

low carbohydrate diet increases CS activity in both heart and soleus muscle of rats. ̂ 2 

To test the hypothesis that dietary raw beef enhances skeletal muscle energy 

production more than a com-soy base diet, greyhounds were fed these diets and skeletal 

muscle activity of key energy producing enzymes and substrate content was compared. 

For this reason, phosphofructokinase (PFK) activity was measured as a marker for 

glycolytic capacity because it is the rate-limiting enzyme of glycolysis. Citrate synthase 

(CS) activity was measured as a marker for oxidative capacity because its activity closely 

correlates with maximum oxygen consumption of tissues and increases in response to 

endurance exercise training. Glycogen content was measured to determine if either diet 

altered carbohydrate availability. 

Glutamate-pyruvate transaminase (GPT) activity was measured as a marker of 

muscle ability to withstand high intensity exercise. GPT activity reflects muscle's capacity 

to dispose of excess pyruvate while producing less lactate, regenerating NAD+, and 
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perhaps minimizing ammonia accumulation. ̂ 4 Glutamate-pyruvate transaminase activity 

controls the transamination of pyruvate within muscle to alanine. Alanine release from 

muscle increases with exercise^^»^^ and protein supplementation^- The increase in alanine 

has been estimated to be 35-60% of the lactate production, The fact that GPT activity, 

and not lactate dehydrogenase activity, is increased in endurance trained muscle would 

suggest the possibility that alanine is produced as an alternative to lactate production thus 

reducing acidosis. Diet alone, can increase GPT activity, as well.9 

The objective of the study was to determine if the raw-meat mixed diet could alter 

activity of key enzymes involved in energy production. If the raw meat-mix diet could 

increase PFK activity, CS activity, and/or GPT activity, then training-like performance 

improvements may result. 
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MATERIALS AND METHODS 

A study which incorporated diets and a training regimen that simulated field 

conditions was designed. Fifteen, 2-5 year old, male and female greyhounds were 

randomly divided into two diet groups. Dog body weights were approximately 30-40 kg. 

All dogs were previously track trained, most within 3-4 months of this study. One female 

dog, however, was 7 years old and had not been formally trained for one year prior to this 

study. A more uniform distribution of sex, weight and age among dogs used in this study 

was not possible because of limited availability of greyhounds. Dogs were housed outside 

in 50-foot-long pens for the duration of the study. To acclimate dogs to surroundings and 

maintenance-training protocol, all dogs were fed a control cereal diet^ that was different 

from test diets, and exercised at the track used in this study, for at least one month before 

start of study. 

Group 1 contained 7 dogs (4 females and 3 males) which were fed a 75:25 (w:w) 

raw beef and com-soy base dry food diet.b Group 2 contained 8 dogs (5 females and 3 

males) fed a 100% com-soy base dry food diet. Composition of each diet is shown in 

Table 1. The 800 g meat-mix diet contained 1960 kcal with protein, fat and carbohydrate 

contributing approximately 35, 44 and 21% of kcal, respectively. The corn-soy diet 

weighed approximately 500 g and contained 1945 kcal with protein, fat and carbohydrate 

contributing 28, 27 and 45% of kcal, respectively. The disparity in diet composition 

between groups was unavoidable since the funding source required actual diets used by 

trainers. All dogs were fed one meal daily at approximately 10 to 12.a.m. in the morning. 

The volume of com-soy base dry food was the most a greyhound would consume in a 

single meal. Water was given ad libitum. 

Exercise was similar to race length and field training procedures. Two mornings 

per week from 8-10 a.m. (Mondays and Thursdays or Tuesdays and Fridays) dogs were 



www.manaraa.com

3 5  

transported 20 miles in a trailer to and from a practice track where they were exercised. On 

three separate occasions, inclement weather forced all dogs to be exercised only one day 

per week. Once at the track, two or three dogs at a time were placed in mechanically-gated 

starting boxes that opened simultaneously. The dogs chased an electronic lure around the 

1/4 mile track so that a total distance of 5/16 mile (.52 km) was run. Because of the dogs' 

willingness to run it was assumed that maximal speed was attained. 

Procedures for sample collection were performed on fully conscious dogs lying in 

left lateral recumbency on a surgical table. A heating pad set on the lowest heat level was 

placed between dog and table and a small pillow was provided for head support. Restraint 

consisted of the animal handler gently laying a hand on the greyhound's chest and 

occassionally rubbing the thorax. All dogs were acclimated in this position for 

approximately 15 minutes before any procedure was performed. 

Approximately 25 mg of resting muscle was taken from the biceps femoris muscle 

of each dog at 0, 8, and 16 weeks using a 6 mm biopsy needle using a method described 

by Bergstrom.l^ Lidocaine®, a local anesthetic, was used prior to skin incision.^ 

Biopsies were analyzed fluorometrically for PFK activity using the technique described by 

Mansour et al. and for glycogen content using a method described by Passoneau and 

Lauderdale 19. Biopsies were also analyzed spectrophotometrically for CS activity using 

the technique by Srere^O and for GPT activity using the method described by Mole et 

al. 16. 

The statistical method used was a two-way ANOVA for repeated measures (Diet x 

Week) followed by post-hoc analysis (Scheffe) when a significant F ratio (P < 0.05) was 

obtained.21 
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RESULTS 

There was a significant difference in CS activity at 8 weeks when comparing the 

100% com-soy fed dogs (group 2 = 36.1 ± 5.8 |imol • min"^ • g"^ wwt) to the meat-mix 

fed dogs (group 1 = 27.1 ± 4.6 p,mol • min"^ • g"^ wwt). The dogs fed the corn-soy diet 

had a significantly (P < 0.05) elevated CS activity at this time point. At 16 weeks CS 

activity was still elevated (P < 0.06) for the com-soy fed dogs (34.2 ± 4.4 |iimol • min'l • 

g"l wwt) when compared to the meat-mix fed dogs (26.5 ± 6.4 |imol • min'^ • g"l wwt). 

There were no significant differences for any other parameter measured. 

Glutamate-pyruvate transaminase activity (Table 2) was remarkably similar between diet 

groups and time periods, although the lowest activities were measured at the 16 week 

sample. Phosphofructokinase activity (37.6 ± 6.2 |imol*min"l*g"lwwt) was remarkably 

similar between diet groups and sampling periods (Table 3). Glycogen content was not 

different for any diet group or sampling period. There was a trend over time, however, in 

glycogen content of the meat-mix fed dogs. Those dogs fed the meat-mix diet had the 

lowest glycogen concentration (57.5 ± 9.9 |imol glycosly unit • g'l) at the 8 week 

sampling period compared to other sampling periods (65.9 ± 3.6 |imol glycosly unit • g"^). 

Body weights were remarkably consistent throughout the 16 week study (Table 4). 

Although there was a slight difference between diet groups at the begining of the study 

(28.3 ± 2.7 kg, meat-mix diet; 31.4 ± 4.9 kg, com-soy diet), the difference was consistent 

throughout the study. Within diet groups, however, there was no difference in body 

weights over the 16 week study. 
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DISCUSSION 

The hypothesis that diet could enhance cellular potential for energy metabolism in 

trained dogs, as measured by substrate and enzyme activities, was examined. Oxidative 

potential was examined by measuring the marker for oxidative metabolism. Glycolytic 

potential was examined by measuring the substrate concentration and rate-limiting enzyme 

activity for glycolysis. 

Greyhounds fed a 100% com-soy base diet had significantly increased CS activity 

in biceps femoris muscle when compared to greyhounds fed a raw-meat mix diet at the 8 

week sample. Greyhounds have higher levels of CS activity in gluteus medius and 

semitendinosus muscles than do crossbreds.^ Earlier research has shown large increases 

in muscle citric acid cycle enzyme activities as a consequence of prolonged endurance 

training. jn the present study, there was no increase in CS activity in the meat-fed 

group. Because all dogs were exercised identically, two explanations of the data are 

possible. Either the exercise regimen was sufficient to elicit a functional increase in all 

dogs, but meat-feeding interfered with the expected increase in CS activity in the meat - fed 

dogs, or the exercise was not adequate to elicit a functional adaptation in either group, and 

the com-soy diet, itself, increased CS activity in those dogs fed the dry diet. Because the 

exercise regimen in the present study would not qualify as endurance training, and thus 

cause a functional increase in CS activity,22-25 the latter possibility that a com-soy diet 

increased CS activity is favored. 

Increased activity of CS may indicate increased capacity for oxidative metabolism 

and could be extrapolated to mean oxidative capacity of greyhound skeletal muscle 

increased with a corn-soy diet. This enzyme induction within skeletal muscle most likely 

occurs in response to an increased need for ATP.25 Citrate synthase synthesis is 

potentiated by ADP and inhibited by ATP.26 Skeletal muscle in a glucose deprived state is 
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characterized by high ADP and low ATP concentrations. It may be possible that fatty acid 

metabolism within the skeletal muscle might increase resulting in an accumulation of acetyl-

CoA available for oxidation in the citric acid cycle An increase in CS activity might be 

expected in an animal oxidizing fatty acids because acetyl-CoA and oxaloacetic acid are 

substrates for citrate formation. Increased activity of this reaction would provide fuel for 

the citric acid cycle. Such a sequential change in muscle enzyme activity was shown by 

Pette et al. when intermittent long term stimulation of rabbit fast-twitch muscle caused large 

initial increases in enzymes of fatty acid activation followed later by increases in CS and 

enzymes involved in fatty acid oxidation.^^ There is a positive correlation between higher 

oxidative capacity and increased fatty acid oxidation. It has been shown that greyhounds 

have a higher activity of 3-hydroxyacyl Co A dehydrogenase, the enzyme marker for fatty 

acid metabolism, than man eventhough greyhound body fat composition is considerably 

lower than man. Although a high fat diet can increase CS activity in some rats^S, other 

rats29 and trained men^O do not show higher CS activity when fed a high fat diet. 

Although both diets in this study had similar caloric content the corn-soy base diet had 40% 

less fat by weight than the meat-mix diet. Body weights were consistent throughout the 

study with the exception of one meat-mix fed dog indicating caloric content and protein 

level were adequate. Dietary fat content may not be the stimulus to increased CS activity in 

greyhounds fed the corn-soy diet. Dogs that were fed the higher fat, meat diet in the 

present study did not have an increased CS activity. Perhaps greyhounds fed the corn-soy 

diet were more active in their 50-foot-long pens than the meat-mix fed dogs. If the com-

soy diet was less satisfying or palatable the dogs fed this diet may have moved around the 

outdoor pen more to seek more appealing food. The com-soy diet was fed to dogs in 

portions that were 300 g less per day than the meat-mix diet portions. It is possible that the 

dogs fed the corn-soy diet felt less full than the meat-mix fed dogs and were, therefore, 

more active. The increased CS activity then might be due to an exercise effect rather than a 
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true dietary effect. Whether increased activity of CS is advantageous to a sprinting 

greyhound has yet to be determined, but it is possible that the com-soy diet optimizes 

physical conditions that favor activity. 

Glycolytic capacity in greyhound skeletal muscle was evaluated by measuring 

glycogen, the preferred substrate of anaerobic metabolism, and PFK activity, the rate-

limiting enzyme activity of glycolysis. Since diet and sampling period did not affect these 

levels, it was concluded that the diets used in this study did not alter glycolytic potential of 

greyhound skeletal muscle. 

Muscle GPT activity was not different between diet groups or sampling period and, 

therefore, may indicate that alanine production would not be expected to be different 

between diets. Muscle alanine concentration is elevated with exercise ̂  6, and acidosis^ 1 

and postexertionally with protein supplementation.^ The possibility of an immediate post-

exercise or post prandial enzyme activity difference between diets used in this study cannot 

be ruled out. 

Reported values for greyhound glycogen, PFK, GPT, and CS activities are sparse 

and varied. The two reports which cited values measured in this study used measurement 

techniques different from each other and some were different from those used in this study, 

therefore direct comparison of data is difficult. For example, the present study reported 

glycogen as 65.9 ± 3.6 |imol • g'^ glucosyl units, however, one report expressed glycogen 

concentration as 33 fimol • g"l of muscle (determined from graph)^ and the other study 

reported glycogen phosphorylase activity as 130 ± 11 |imol • min'l • g'^ dry wt32. The 

value for greyhound GPT in the literature, 56 ±6 |imol • min'^ *g'l dry wt, is comparable 

to the measurement of 13.6 ± 3.2 |imol • min'l • g'^ wwt reported in this study.3 2 

Typically, dry weight determinations of a compound within greyhound skeletal muscle are 

about fourfold higher than wet weight determinations in the same muscle (unpublished 

data). However, this same reference used the identical technique used in the present study 
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to determine CS activity, but the value reported, 19 ± 2 |imol • min"^ • g"^ dry wt, is lower 

than the value presented in the present study, 27.8 ± 7.3 |J,mol • min"l • g-1 wwt. More 

studies are needed to verify accurate values. 

In conclusion, a raw meat-mixed diet fed to exercised greyhounds did not enhance 

glycolytic or oxidative energy production. On the contrary, it appeared that the 100% com-

soy base diet may have increased oxidative potential in greyhound skeletal muscle as 

indicated by the significantly elevated CS activity in those dogs fed a 100% com-soy base 

diet. This increase in CS activity may be related to increased physical activity levels in 

dogs fed the corn-soy diet and may indicate that the corn-soy diet optimizes physical 

conditions that favor activity. The traditional meat-mixed diet does not provide greyhounds 

with an advantage in terms of oxidative or glycolytic capacity. Use of this diet, therefore 

cannot be supported on this basis. Whether dogs fed a meat-mixed diet perform better in 

competition was not addressed in this study, but the lack of significant effects on either 

oxidative or glycolytic potential argues against a performance advantage as a result of a 

meat-mixed diet. 
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FOOTNOTES 

^K-9 Maintenance, Science Diet ®; Hill's Pet Products, Division of Colgate-
Palmolive Co., PO Box 148, Topeka, KS. 

bpunna Hi-Pro®, Ralston-Purina Co., 1 Checkerboard Square, St. Louis, MO; 
com soy ratio 

CLidocaine HCl, Norden Laboratories, Lincoln, NE 
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Table 1. Composition of daily diets fed to greyhounds 

Group 1 = Meat-Mix Diet^ Group 2 = Com-Soy Diet^ 

Parameter g % g 

Protein 21.1 169 27.8 139 
Fat 12.0 96 11.4 57 
Fiber 1.5 12 2.2 11 
Nitrogen Free 13.1 105 43.9 219 
Extract 
Water 49.7 398 8.7 43 
Phosphorus 0.4 • 2.9 0.9 4.3 
Calcium 0.4 3.4 1.3 6.4 

^Meat-mix diet = 75% raw beef: 25% Purina Hi-Pro® (w:w). 

^Corn-soy diet = 100% Purina Hi-Pro®-

(^Percentage of diet, by weiglit, on a dry-matter basis. 
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Table 2. Effect of diet on citrate synthase (CS) and glutamate-pyruvate 
transaminase (GPT) activities in resting biceps femoris muscle of trained 
greyhounds 

Enzyme 
Sample 
(weeks) 

Meat-Mix Diet^ 
(n) 

Com-Soy Diet^ 
(n) 

CS 
(|imol • min'l • g"l wwt'^) 

0 

8 

27.8 ± 7.3(5)d 

27.1 ±4.6*(7) 

29.1 ±4.2(7) 

36.1 ±5.6*(8) 

16 26.5 ± 6.4(7) 34.2 ± 4.4(8) 

GPT 
(Hmol • min"l • g-1 wwt) 

0 

8 

13.6 ± 3.2(5) 

12.8 ± 2.2(7) 

12.9 ± 2.9(7) 

13.8 ± 2.9(8) 

16 10.6 ± 3.3(7) 10.2 ± 2.6(8) 

^Significantly different between diet groups at this time point (P < 0.05). 

^Meat-mix diet = 75% raw beef: 25% Purina Hi-Pro®(w:w). 

^Corn-soy diet = 100% Purina Hi-Pro.® 

cWwt represents wet weight of muscle tissue. 

^Values are means ± SD; the (n) represents number of dogs. 
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Table 3. Effect of diet on phosphofructokinase (PFK)activity and 
glycogen content in biceps femoris muscle of trained greyhounds 

Parameter 
Sample 
(weeks) 

Meat-Mix Diet^ 
(n) 

Com-Soy Diet^ 
(n) 

PFK 0 37.6 ± 6.2(6)d 36.1 + 6.7(7) 
(|imol • min'l • g'^ wwt^) 

37.6 ± 6.2(6)d 
(|imol • min'l • g'^ wwt^) 

8 34.4 ± 7.2(7) 38.6 ± 4.9(7) 

16 36.2 ± 3.0(7) 36.1 ±6.7(8) 

Glycogen 0 65.9 ± 3.6(5) 64.7 ± 8.9(7) 
(fimol glycosyl units • g'^ ) 

8 57.5 ± 9.9(7) 67.5 ± 8.5(7) 

16 62.8 ± 7.5(7) 65.0 ± 5.8(8) 

^Meat-mix diet = 75% raw beef: 25% Purina Hi-Pro® (w:w). 

^Corn-soy diet = 100% Purina Hi-Pro®. 

cWwt represents wet weight of muscle tissue.' 

(^Values are means ± SD; the (n) represents number of dogs. 
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Table 4. Body weights of greyhounds (kg) pooled for diet at 0, 8 and 16 weeks 

Diet 
Length of exercise period 

0 weeks 8 weeks 16 weeks 
Meat-mix diet (7)% 
Com-soy base diet (8) 

28.3 ± 2.7b 28.8 ± 3.2 
31.4 ±4.9 30.5 ±4.2 

28.4 ± 2.6 
31.5 ±4.5 

^Number in parentheses is number of dogs. 

^Mean ± SD. 
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PAPER 2. THERMODILUTION METHOD OF BLOOD FLOW DETERMINATION IN 
THE EXTERNAL ILIAC VEIN OF THE CONSCIOUS GREYHOUND 
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ABSTRACT 

The thermodilution technique was applied through a percutaneous approach to 

produce valid, reliable estimates of hindleg blood flow in the external iliac vein of 9 

conscious, trained, adult greyhound dogs. The total flow through the external iliac vein 

averaged 595 ± 50 ml/min. This same total flow, when expressed on a dog-weight basis, 

was 19.5 ± 2.6 ml * min"^ • kg'l body weight or, when expressed on a hindleg-weight 

basis, was 19.5 ± 3.4 ml * min'l • 100 g"l hindlimb tissue (195.0 ± 34.0 ml • min'^* kg'l 

hindlimb weight). These flows were higher than previously published results for canine 

hindlimb flows where femoral arterial flows were evaluated. The external iliac vein, which 

includes flow from the femoral vein and the deep femoral vein, more truly represents total 

hindleg blood flow than does flow measured in the femoral vein alone. Hindleg flow rates 

presented in this study, therefore, are more representative of actual hindleg blood flow than 

are values previously reported. 
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INTRODUCTION 

Evaluation techniques to measure hindlimb blood flow have been addressed often in 

the literature. 1 Use of established methods to quantify this flow in conscious, non-

surgically intervened dogs, however, has not been determined. Of the several procedures 

available, thermodilution seems the most promising for percutaneous, repeatable 

application in conscious dogs. 

Thermodilution is a valid method of blood flow determination in single vessels.4.9 

The technique is based on injecting ice-cold physiological saline into a vessel and 

measuring the temperature change recorded by a thermistor placed in that same vessel. 

Both arterial and venous flows can be determined with this method. The choice of which 

to use is dependent on protocol. Perhaps most important for venous flow validity is that 

arterial manipulation can cause immediate and drastic collateral circulation, which greatly 

decreases blood flow in the catheterized artery.^» 

Of the several veins available in the hindleg, the external iliac vein is ideal for 

assessment of total hindlimb blood flow. This intra-abdominal vein receives blood from 

the femoral vein, the deep femoral vein, and the pudendoepigastric trunk, The femoral 

vein drains most of the hindlimb musculature and has been the vessel of choice of others 

for determining hindlimb blood flow. ^'2.4-8 The deep femoral vein, however, drains the 

skin of the upper caudal thigh and the proximal hamstring musculature (biceps femoris, 

semitendinosus, and semimembranosus).^^ Therefore, the external iliac vein truly 

represents total blood flow from all major muscles of the hindlimb. A slight overestimation 

of hindleg flow may occur because the pudendoepigastric trunk, which drains adipose 

tissue inside the pelvic inlet and a portion of the rectus abdominus muscle, will be included 

in any blood flow measurement of the external iliac vein. This degree of error is less than 

the underestimation of flow assumed by eliminating the deep femoral venous contribution 
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altogether. The intra-abdominal location of the external iliac vein, however, has precluded 

any blood flow measurement attempts on conscious, non-surgically intervened dogs prior 

to development of the thermodilution technique. The purpose of this study was to present a 

percutaneous approach to and use of the thermodilution technique to determine total hindleg 

blood flow in the external iliac vein of the conscious greyhound. 
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MATERIALS AND METHODS 

Blood Flow Determination 

Blood flow in the external iliac vein was determined for 9 trained greyhounds in a 

cross-over study examining a meat-mix diet vs. a dry, grain-based diet. Procedures were 

performed on fully conscious dogs lying in left lateral recumbency on a surgical table. A 

heating pad set on the lowest heat level was placed between dog and table and a small 

pillow was provided for head support. Restraint consisted of the animal handler gently 

laying a hand on the greyhound's chest and occassionally rubbing the thorax. All dogs 

were acclimated in this position for approximately 15 minutes before any procedure was 

performed. Blood flow rates were determined from an average of six measurements taken 

per dog within a 15 minute period. 

The distal end of an Edslab® balloonless thermodilution catheter^ was marked with 

the length of the external iliac vein that had been predetermined from greyhound cadavers. 

This catheter, which contained a temperature-sensitive thermistor at its tip, was placed 

percutaneously into the left femoral vein at the inguinal canal by using the following 

technique. An 18 ga, 1 1/2 inch long, Cathlon IV® catheter^ was first placed into the 

femoral vein. The thermodilution catheter was threaded through this IV catheter into the 

femoral vein. The TV catheter then was removed over the thermodilution catheter, leaving 

the thermodilution catheter in place. The preplaced marks were then used as a guide to 

ensure thermistor placement in the external iliac vein. 

The temperature indicator chosen was 0.5 ml of ice-cold physiological saline. The 

saline was injected into the femoral vein through a 20 ga IV catheter® placed either 13.3, 

15,2, or 17.0 cm up-stream (toward the patella) from the thermistor tip. Thermistor leads 

were interfaced with an analog-to-digital computer*^ that recorded area of temperature 
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change. The area under the resulting thermodilution curve was indirectly proportional to 

the rate of blood flow. 

Standardization of Thermodilution Catheters 

Standard curves had to be established for each of 3 thermal probes used, at each 

distance the 0.5 ml indicator traversed to reach the probe. To prevent a plateaued 

thermodilution curve due to indicator speed exceeding blood flow at shorter distances, 

13.3, 15.2, and 17 cm distances were used routinely throughout the experiment. 

Physiological flows ranging from 96 ml/min to 800 ml/min were assessed. A constant 

flow water pumpf attached to approximately 160 cm of 0.64 cm diameter latex tubing was 

used to simulate venous flow. The thermistor and injection catheters were introduced into 

the tubing in a manner identical to live animal preparation. Standard curves were 

determined from measurements of thermodilution curves produced in triplicate from each of 

the 3 flow rates tested at the specified injection to probe distance. Each standard curve, 

therefore, is a result of a minimum of 9 thermodilution curves. An X-Y planimeterS was 

used to determine area under the curve. Regression lines for each catheter at both distances 

were calculated and used for subsequent blood flow determinations (Table 1). All attempts 

were made to use the same thermistor in the same dog for each sampling period. 

Hindleg Volume 

Hindleg volume was determined in order to establish blood flow/100 g hindleg 

tissue. Direct volume was determined by water displacement of the dismembered left leg 

after euthanasia at the end of the experiment. The leg was cut with a band-saw parallel to 

the vertebral column and perpendicular to the femur on a line that transected the top fourth 

of the femoral head. The leg was weighed before water displacement to determine density. 

In addition, volume was determined indirectly by using the formula for cone 

volume: V = l/3bh, where b equaled the cross-sectional area (Ttr^) of the widest part of the 
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thigh and h equaled the distance from the femoral head to mid-lateral condyle to lateral 

process of the talus. Radius of the widest aspect of the thigh, measured while the living 

dog was standing, was calculated from a circumference measurement of the thigh applied to 

the circumference formula 27cr. 

An example of calculations used in this formula follows. Radius (r) can be 

calculated from the circumference measurement taken from the thigh and the formula for 

circumference (C), C = 2m. If 50.8 cm = 6.28r, then r = 8.1 cm. From this, r can be 

utilized in the formula for area (A), A = nr^, where A = 3.14 • S.lcm^. Therefore, A = 

206 cm2. Volume can then be determined by using the formula V = 1/3 b h, where b = 

206 cm2 (calculated) and h = 48.3 cm (measurement). Finally, volume = (1/3) • 206 cm^ • 

48.3 cm, or 3317 cm^. 

All values are presented as means ± standard deviations. 
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RESULTS 

Standard Curves 

Three catheters were used in blood flow determinations. Both the A and the B 

catheters were standardized for 2 different injection to thermistor distances. The C catheter 

was evaluated at one distance only. The correlation coefficient comparing the actual flow 

of warm water through the constant-flow water pump with the area produced under the 

thermodilution curve was greater than 0.92 in all cases (Table 1). 

Blood Flow 

Resting hindleg blood flow rates in greyhounds were higher than comparable blood 

flow rates reported for non-greyhound dog breeds. Greyhound resting blood flows were 

determined from the external iliac vein and had a mean (± SD) value of 595 ± 50 ml • min"l 

total flow. This blood flow value can also be expressed as an average of 19.5 ± 2.6 ml » 

min"^ • kg-1 body weight or 19.5 ± 3.4 ml » min'l • 100 g"^ hindleg tissue (Table 2). All 

blood flow values were averaged from a minimum of 6 flow determinations per dog. 

Hindleg Volumes 

Actual hindleg volume determinations averaged 2711 ± 308 ml. Calculated hindleg 

volume measurements averaged 2638 ±314 ml. There was no significant difference 

between direct hindleg volume and indirect volume measurements (Table 3). A correlation 

coefficient of 0.83 demonstrates that the indirect method of determining volume closley 

approximates that determined by actual methods. 

Density of greyhound hindlegs was determined by dividing the actual weight of 

each hindleg determined by scale measurement with the actual volume of the same hindleg 
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as determined by water displacement of the dismembered leg. Mean density of greyhound 

hindlegs determined in this manner was 1.14 ± 0.04 g/ml. 
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DISCUSSION 

Local thermodilution has been established as a valid method for determination of 

single vessel blood flow in humans.4>9 This study reported successful use of the 

thermodilution method, as determined by reproducibility of data, to determine external iliac 

vein blood flow in conscious greyhounds without surgical intervention. The external iliac 

vein was chosen to assess total hindlimb blood flow. Venous blood flow can be used 

instead of arterial blood flow to evaluate hindlimb blood flow. Arterial blood flow is 

assumed to equal venous blood flow in a limb fed and drained by a single vessel provided 

there is no edema development. The lower pressures in the venous system coupled with 

larger diameter vessels make venous blood flow determinations preferable to arterial flow 

determinations in conscious dogs. Hematoma development is minimal and cannot be 

disregarded when working with unanesthetized animals. A conscious dog will not tolerate 

30 to 40 minutes of constant, heavy pressure applied to the catheter site as is necessary 

when an artery is catheterized. In addition, catheter impingement on flow is minimal with 

venapuncture because vessel radius is relatively large. 

Values reported in this study for total hindleg blood flow in greyhounds were 

higher than previous flows presented in a literature review by Hobbs et al.(1962) that 

compared different methods of flow determination in the femoral artery of non-greyhound 

dog breeds that were under barbiturate anesthesia. Three accounts of canine external iliac 

artery flow determinations by using a thermostromuhr^'7 vvere also lower than flow results 

in the present study. A single report of anesthetized, surgically manipulated greyhounds 

indicated hindleg blood flow values similar to the present study. ̂ 2 

The higher hindleg flows in the present study could be attributed to several factors. 

Blood flow measurement in the external iliac vein should be higher than femoral vein flows 

in the same animal because the latter excludes flow from the deep femoral vein. Inclusion 
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of this vessel is necessary for assessing total hindleg flow. In addition, venous flow 

measurements may be higher and more accurate than comparable arterial flow 

measurements because arterial rerouting may occur in an artery when catheterized.^'^ Only 

one account of external iliac arterial flow determination in a conscious dog is reported and 

the flow of 100-200 ml/min could not be associated with body weight as none was 

indicated (Linton et al., 1941). The authors commented on this value as low, but, did not 

associate the 1/2 grain of morphine administered to calm the dog as a factor. Two reports 

of external iliac arterial flow determination in anesthetized dogs using a thermostromuhr 

indicated flows of 4.8 and 12.4 mis • min"^ • kg'l body weight, which are lower than the 

comparable venous flows reported in this study.2.7 The thermodilution technique itself 

may provide higher, arid perhaps more accurate, flow values than other methods of blood 

flow analysis. In humans where thermodilution was used to measure femoral artery flows, 

the resulting values were higher than values from other methods. 

Genetically, the greyhound breed may have a higher hindleg blood flow than do 

other breeds of dogs. The only report of greyhound hindleg blood flow in the literature 

states a value of 18.5 ± 5.0 mis • min'l • 100 g'^ gracilis muscle.^2 The 7 anesthetized 

greyhounds used in that study were surgically manipulated so that the left gracilis muscle 

was vascularly isolated in a femoral artery and vein perfusion circuit. Both arterial and 

venous flows were determined by an electromagnetic flowmeter. Even though the animal 

preparation and flow measurement technique was vastly different from the present study, 

there was remarkable similarity in reported resdng flows emphasizing that greyhounds may 

have genetically higher flows than other breeds of dogs. Additional evidence of genetic 

advantage in the greyhound breed is that greyhounds possess more hindlimb muscle mass 

per total body weight and have higher hindlimb flows/100 g hindlimb weight than do other 

canine breeds. ̂  3 Table 3 shows greyhound left hindleg weight to be 10% of its body 

weight as determined from direct weighing of the dismembered left hindlegs. In non-
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greyhound breeds of dogs, the single hindleg weight is only 5% of body weight. This 

percentage was calculated from the literature^»^, by the author, by comparing the ratio of a 

dog's total hindleg blood flow to its body weight with the ratio of the same total hindleg 

blood flow to its hindleg weight. In non-greyhound breeds, a 1:20 ratio exists indicating a 

non-greyhound hindleg is l/20th, or 5%, of its body weight. Therefore, total blood flow, 

in ml/min, through the external iliac vein of a greyhound would be 2-fold higher than total 

hindleg blood flow in a similarly sized non-greyhound dog because a greyhound hindleg 

weighs twice as much. That additional muscle tissue needs to be perfused. However, the 

external iliac blood flow per unit hindleg weight would not be different between 

greyhounds and other breeds unless greyhounds had a genetically higher blood flow per 

unit weight. Data from this study show such a genetic advantage. One hundred g of 

greyhound hindleg tissue receives 38% more blood flow than does 100 g of a non-

greyhound breed's hindleg tissue. This increase in hindleg blood flow may actually be 

greater than 38% because of calculation errors based on increased bone weight in exercised 

animals. Rats that received regular strenuous exercise had heavier bones with greater 

volume. 14 Because bone has a lower perfusion need, but still contributes to the total 

hindleg weight, the actual blood flow to the muscle is probably higher than the calculated 

ratio, blood flow/100 g hindleg tissue, would indicate. Another indicator of muscle 

perfusion or drainage potential is the mean area of muscle supplied by a capillary. This area 

is remarkably similar between greyhounds and other breeds of dogs. 13 The increased 

blood flow in greyhounds, therefore, may be caused by higher mean arterial pressure and 

lower calculated peripheral resistance that is common to the greyhound breed. 15 

Lastly, dogs used in this study were conscious, thus anesthetic cardiovascular 

depression was not a factor for greater hindleg flow rates measured in these greyhounds. 

Barbiturate anesthesia was used in most previous accounts of canine hindlimb flow. 

Because anesthesia may have decreased peripheral resistance and caused erroneously 
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elevated flows, those reported flows may have been even lower in the unanesthetized 

state.2i4,6,7,9 

The concern that epinephrine elevation due to apprehension in conscious dogs 

might contribute to higher flows is unwarranted. Circulating epinephrine concentrations 

high enough to increase systemic blood pressure cause a decrease in blood flow through 

the external iliac vein.^ The external iliac vein drains muscle, skin, and bone marrow of 

the entire hindlimb. Upon an epinephrine surge, the vasoconstriction of vessels in non-

muscle tissue such as skin and splanchnia, compensates for the vasodilatation of vessels in 

muscle. The result of this skin and splanchnic blood pooling is an overall decrease in 

blood flowing through the external iliac vein. In addition, the greyhounds used in this 

study showed no signs of apprehension and most would lie on the table with eyes closed 

throughout the procedure. Data were collected over a 15 to 30 minute post-catheterization 

period when dogs were calm. Furthermore, the values reported in the present study were 

averaged from at least 6 determinations at 2 separate collection periods 6 weeks apart. 

External iliac vein flow values for individual dogs varied little from one measurement to 

another as shown by a typical collection range of 70 ml (544, 550, 590, 603, 614 ml 

recorded in dog 6). 

An accurate mathematical estimation of hindleg volume was determined that closely 

predicted actual volume. Together with hindleg density of 1.14 ± 0.04 g/ml, these 

calculations can be used clinically or experimentally to easily assess accurate hindleg size 

and weight. 

Based on these results, the thermodilution technique can be used percutaneously to 

accurately determine external iliac vein blood flow in the conscious greyhound. Because of 

breed variation, values reported in the present study represent total hindleg blood flow in 

the greyhound better than do previously reported canine values. In any breed, however. 
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the external iliac vessels should be used to evaluate total hindleg blood flow because these 

measurements include blood flow from the entire hindleg. 
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FOOTNOTES 

^Nani Goshal, DVM, PhD. 1991. Personal communication. Iowa State University, 
Ames, lA 50010. 

^Baxter International Inc., Edwards Divisions, Santa Ana, CA 92711-5686. 

cCathlon IV®, Johnson and Johnson Company, Tampa, FL 33630. 

^Analog-to-digital computer program designed by Dr. Richard L. Engen, College 
of Veterinary Medicine, Iowa State University. 

®Angiocath®, Deseret IV, Deseret Medical Inc., Becton Dickinson and Company, 
Sandy, UT 84070. 

%aake FJ, Haake Instruments Inc., 244 Saddle River Rd., Saddle Brook, NJ 
07662. 

gLasico Polar Compensating Planimeter, Lasico, 2451 Riverside Dr., Los Angeles, 
CA 90039. 
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Table 1. Standard curves for thermodilution catheters as determined from a constant-flow 
water pump 

Catheter^ Distance^ 
(cm) 

Warm 
Water 
Flow 

(ml/min) 

Area 
Under 
Curve'' 
(cm2) 

CCd Regression Line 

A 17 96 
384 
616 

35.7 
15.8 

8.4 

-.981 Y = -.053x439.3 

A 13.3 96 
384 
616 

41.1 
16.2 

8.8 

-.972 Y = -.063X+45.0 

B 17 96 
156 
384 
800 

45.1 
34.4 
15.0 

5.6 

-.931 Y = -.052x443.8 

B 13.3 96 
384 
800 

38.8 
18.7 

5.6 

-.975 Y = -.046X+40.7 

C 15.2 146 
373 
800 

34.4 
14.7 

5.9 

-.925 Y = -.041x436.2 

^Three identical catheters. The same catheter was used on the same dog throughout 
the procedures. 

^Distance between indicator injection and theimistor tip. 

CArea under the thermodilution curve recorded by an x-y planimeter. 

^Correlation coefficient between water flow and corresponding area under the 
curve. 
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Table 2. Resting blood flows from the external iliac vein in greyhounds 

Dog 
Total Flow 

(ml «min"!) 

Total Flow/ 
kgBWa 

(ml • min"^ • kg-1) 

Total Flow/ 
100 g Hindleg 

(ml • min'^ • lOOg-1) 

1 625 19.3 19.6 
2 561 16.3 15.9 
3 600 18.3 17.2 
4 613 21.7 22.7 
5 506 15.7 14.0 
6 570 19.6 20.2 
7 688 23.6 25.0 
8 577 19.1 19.9 
9 614 21.6 21.0 
Mean 595 19.5 19.5 
SDb 50 2.6 3.4 

%W = body weight. 

bgD = Standard deviation. Values for each dog were an average of 
at least 6 determinations taken within 15 minutes of each other. Values were 
determined on three dogs per day, three days in a row. 
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Table 3. Hindleg volume and density determinations in greyhounds 

Dog Body Actual Calc. Hindleg Density 
Weight Volume^ Volume^ Wt (g/ml) 

(kg) (ml) (ml) (g) 

1 32.3 2810 2844 3180 1.13 
2 34.3 3190 3012 3523 1.10 
3 32.7 3125 2749 3482 1.11 
4 28.2 2400 2357 2700 1.12 
5 32.3 2910 3115 3604 1.24 
6 29.1 2450 2285 2819 • 1.15 
7 29.1 2430 2269 2752 1.13 
8 30.2 2605 2467 2904 1.11 
9 28.4 2480 2642 2919 1.18 
Mean 30.7 2711 2638 3098 1.14 

SDC 2.21 308 314 356 .04 

^Actual volume was determined from water weight displacement 
of leg severed from body after euthanasia. Correlation coefficient 
comparing actual vs. calculated volumes = 0.83. 

(^Calculated volume of hindleg determined from indirect measure 
ment using formula V = 1/3 bh. V = volume where b = cross-sectional 
area of the widest part of the thigh measured on the living, standing dog 
and h = the distance from femoral head to mid-lateral condyle to lateral 
process of the talus. 

CSD = Standard deviation. 
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PAPER 3. EFFECT OF DIET COMPOSITION AND EXERCISE ON ENERGY 
PRODUCING AMINO ACIDS IN GREYHOUNDS. 
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ABSTRACT 

The effect of diet and training was examined in 10 adult, male, previously track 

trained, greyhounds to determine if either treatment altered the de novo production of 

alanine from pyruvate as an alternative to lactate formation. A double cross-over study was 

designed that included a 24 week diet/no exercise challenge followed by a 14 week 

diet/exercise challenge. During the diet/no exercise challenge, group 1 was fed diet 1 for 

12 weeks and then switched to diet 2 for the next 12 weeks. Simultaneously, group 2 was 

fed diet 2 for 12 weeks and then switched to diet 1 for the next 12 weeks. Diet 1 was a 

100% com-soy based dry food providing 134 g protein and 1966 kcal. Diet 2 was 74% 

raw beef, 10% com-soy-based dry food, and 16% sucrose, providing 139 g protein and 

2076 kcal. In the diet/exercise portion of the study, the same dogs were fed a similar diet 

regimen and exercised three times a week for 14 weeks. Diet 2, however, included 150 g 

com starch in place of the sucrose supplement used before. Samples were collected at 

times that corresponded with diet-switching at 12, 24, 31, and 38 weeks. Samples 

included femoral arterial and venous whole blood and plasma and a biopsy of the left 

biceps femoris muscle. Plasma and muscle samples were analyzed for alanine, glycine, 

leucine, isoleucine, valine, and glutamate concentrations. Plasma samples were also 

analyzed for glucose concentrations. Whole blood has analyzed for lactate concentration. 

The raw meat-mixed diet did not significantly alter utilization of any amino acid 

examined, but glycine concentration was significantly increased in arterial and venous 

plasma and muscle when dogs were fed the corn-soy diet. Though not statistically 

significant (P > 0.05), more alanine was released from dogs hindlegs when they were fed 

the com-soy diet coupled with training than when they were fed the meat-mixed diet and 

trained. In addition, when dogs were fed the com-soy diet regardless of whether or not 

they were trained, there was less lactate accumulation in both arterial and venous plasma. 
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Trends in the alanine and glutamate utilization data as well as lactate, glucose, and 

glutamate concentrations in arterial and venous plasma indicate that the com-soy based diet 

may increase glycolytic ability in exercising greyhounds by increasing potential substrate 

flux through the alanine-glucose cycle. 
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INTRODUCTION 

Greyhounds are sprinting animals that depend primarily on glycolytic metabolism, 

which results in production of lactic acid and subsequent muscular acidosis. Historically, 

greyhound trainers routinely have fed a high percentage raw beef diet to their racing dogs in 

the belief that raw beef increases glycolytic performance and recovery ability. 1 The breed 

has evolved genetically to tolerate the stresses of glycolytic exercise. Maximal oxygen 

consumption is elevated in greyhound muscle and has been associated with a predominance 

of intermediate fibers present in greyhound skeletal muscle.^ Greyhound muscle has 

higher enzyme activities associated with anaerobic capacity^ and an increased ability to 

withstand and remove lactate^. 

Physiologically, there are three ways of removing from muscle the lactate that has 

been produced by glycolytic metabolism. The simplest method is to physically remove the 

compound by increasing blood flow to the area of concentration. Greyhounds have higher 

hindleg blood flow rates per weight of hindleg than other breeds of dogs.4 Another 

method of removing lactate is by oxidizing lactate to pyruvate. This conversion is limited 

by the concentration of lactate dehydrogenase (LDH). Lactate dehydrogenase activity is not 

elevated in greyhounds, relative to other breeds of dogs, even though greyhounds have a 

higher proportion, relative to other breeds of dogs, of high myosin ATPase activity fibers, 

which typically have greater LDH activities than do other muscle fiber types.^ The final 

method is to decrease lactate production by funneling its substrate, pyruvate, into alternate 

pathways before lactate is formed. Alternate routing of pyruvate results in production of 

(a) alanine, which diffuses into the blood and is utilized by the liver for gluconeogenesis^, 

or (b) acetyl-CoA, which is oxidized in the citric acid cycle^. 

The focus of this study was to study the de novo production of alanine from 

pyruvate as an alternative to lactate formation. Specifically questioned was whether a raw 



www.manaraa.com

meat-mix diet could increase muscle amino acid concentrations, which then could cycle 

through the alanine-glucose cycle. The alanine-glucose cycle is an important gluconeogenic 

pathway.^ In skeletal muscle, the branched-chain amino acids, leucine, isoleucine, and 

valine, preferentially transaminate a-ketoglutarate to form glutamate. Glutamate 

preferentially transaminates the pyruvate produced from muscle glycolysis to form alanine 

and thus regenerate a-ketoglutarate. The alanine diffuses into the blood where it is 

transported to the liver and transaminated back to pyruvate as an initial step in glucose 

formation. The nitrogen may be recycled to other amino acids and converted to urea for 

elimination from the body. Additional benefits to this pathway include removal of nitrogen 

produced during muscular catabolism, cytoprotection against anoxic injury^, and an anti

ketogenic effect^. These benefits are also important to a racing animal. 

Glycine was first shown to protect rabbit kidney tubules in vitro against anoxic 

injury. Because alanine, which has a structure closely related to glycine, was also 

shown to protect kidney tubules against anoxic injury, it was thought that glycine may be 

metabolically similar to alanine in other ways, too. • Specifically, because diet can affect 

alanine production, it was postulated that diet may also affect glycine concentrations and, 

therefore, glycine was included in the present study. 

Dietary influence on alanine production in skeletal muscle has been implicated. A 

protein supplement has been suggested to increase the amount of alanine released from 

muscle into circulation and to increase glutamate-pyruvate transaminase (GPT) activity in 

exercised, previously sedate humans. ̂  ^ That study suggested that the elevated GPT 

allowed an increased conversion of pyruvate to alanine, thus decreasing the acidosis of 

exercise by removing conversion of pyruvate to lactate. It, therefore, can be implied that 

diet can determine the end product of pyruvate metabolism. This idea is supported further 

by a study that showed plasma branched-chain amino acids, which are a substrate for 
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glutamate production, stay elevated in rats when fed a high protein diet. ̂  2 in addition, diet 

can affect acid-base balance, which ultimately affects amino acid metabolism. 13 

The purpose of this study was to determine if a raw meat-mixed diet could incirease 

the release or utilization of the amino acids involved in the alanine-glucose cycle, therefore 

aiding in the removal of nitrogenous waste and potential substrate for lactate production. 
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MATERIALS AND METHODS 

A double cross-over study comparing two amounts of diet and of exercise was 

conducted with 10 male, 2 to 4 year-old greyhounds randomly divided into two groups. 

All dogs had been raced at a local track for the preceeding racing season and were donated 

to the College of Veterinary Medicine, Iowa State University because of slow race times. 

All dogs were delivered to the research facilities at the end of the racing season 

approximately 4 to 6 weeks before start of the present study and were deemed to be in good 

health. Dogs were housed indoors in individual 15-foot long runs within a climate 

controlled building for the duration of the study. On 4 occassions, dogs were transported 

in a trailer, 4 miles each way, to the laboratory for blood and muscle collections. All dogs 

were housed at the laboratory for 24 hours before collections in individual 10-foot runs. 

Water was given ad libitum throughout the study. 

The 38-week continuous study included a 24-week diet/no exercise challenge 

followed by a 14-week diet/exercise challenge. During the diet/no exercise challenge, 

group 1 was fed diet 1 for 12 weeks. At 12 weeks, blood and muscle samples were 

collected and then the diet was switched to diet 2 for the next 12 weeks, at which time 

blood and muscle samples were again collected. Simultaneously, group 2 was fed diet 2 

for 12 weeks and after blood and muscle sample collections, group 2 was switched to diet 

1 for the next 12 weeks and blood and muscle samples were collected again. Diet 1 was a 

100% com-soy base diet^ that was approximately 500 g total, providing 134 g protein and 

1966 kcal. Diet 2 was 74% raw beef, 10% corn-soy base dry food^ (w:w), and 16% 

sucrose added for caloric supplementation that weighed approximately 950 g, providing 

139 g protein and 2076 kcal. Kilocalorie content of diets was calculated from proximate 

analysis measurements of diets, and dietary amino acid composition was determined by gas 
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chromatography mass spectrometry analysis of diet samples determined by a commercial 

laboratory^ 

The dogs that were studied in the diet/no exercise challenge were also used for the 

diet/exercise challenge that lasted an additional 14 weeks. Exercise consisted of a maximal 

speed (approximately 15 m/sec), counterclockwise run for 30 seconds in a outdoor 

whirligig^ three times a week. All dogs were transported in a trailer for 20 minutes before 

and after exercise. The diet-switching and blood and muscle sampling pattern followed in 

the exercise portion of the study was similar to the pattern followed in the no exercise part 

of the study, except the time between diet-switching was shorter in the exercise study than 

in the diet only study. Group 1 was fed diet 1 for 7 weeks, blood and muscle samples 

were collected, the dogs' diet was then switched to diet 2 for an additional 7 weeks, and 

blood and muscle samples were collected, again. Group 2 was fed diet 2 for 7 weeks, 

blood and muscle samples were collected, the dogs' diet was then switched to diet 1 for an 

additional 7 weeks, and blood and muscle samples were collected. Diet 1, fed during the 

exercise portion of this study, was identical to diet 1 fed during the no exercise portion of 

the study. Diet 2, however, included 150 g com starch*^ in place of the sucrose supplement 

used before. 

Procedures for sample collection were performed on fully conscious dogs lying in 

left lateral recumbency on a surgical table. A heating pad set on the lowest heat level was 

placed between dog and table and a small pillow was provided for head support. Restraint 

consisted of the animal handler gently laying a hand on the greyhound's chest and 

occasionally rubbing the thorax. All dogs were acclimated in this position for 

approximately 15 minutes before any procedure was performed. 

Because utilization and release of gluconeogenic substrates in the hindleg were the 

measurements of interest, simultaneous blood samples and blood flow from the vessels 

feeding and draining the hind limb were obtained. These samples were based on the Pick 
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principle, which states that utilization or release = (arterial concentration - venous 

concentration) x blood flow. Blood samples and blood flow rates were collected after a 

24 hour fast at 12, 24, 31, and 38 weeks, which corresponded with time of diet-switching. 

In the exercise portion of the study, dogs were blood sampled 24 hours after eating a post-

exercise meal, therefore, the 24 hour fast before blood sampling also corresponded to a 24 

hour post-exercise period. 

Total blood flow to the hindleg was determined in the external iliac vein of the left 

leg of conscious dogs by using a percutaneous, thermodilution technique adapted 

previously.4 This whole blood flow was converted to plasma flow by multiplying whole 

blood flow in ml/min x (1.0 - PCV/100). This plasma flow was then used to calculate 

hindleg utilization/release of plasma substrates examined in this study. 

Twelve ml of blood was simultaneously collected from the femoral artery and vein 

immediately after blood flow was determined. One ml was immediately placed into ice-

cold 8% perchloric acid solution and refrigerated until plasma could be harvested by 

refrigerated centrifugation. Plasma was then stored at 4 C until it could be analyzed for 

lactate concentration which usually occurred within 1 to 2 weeks. Remaining blood was 

placed on ice for 1 to 3 hours until hematocrit could be determined. Plasma was then 

harvested by centrifugation and a 1 to 2 ml aliquot was separated and stored at 4 C for 1 to 

2 weeks until glucose concentration could be determined. The remaining 3 to 4 ml of 

plasma was stored at -70 C for 1 to 3 months until amino acid analysis could be 

determined. Approximately 25 mg of the left biceps femoris muscle was collected by using 

the muscle biopsy method described by Bergstrom.l^ Muscle samples were quickly 

frozen in liquid nitrogen and then stored at -70 C for 1 to 3 months, also, until amino acid 

analysis could be determined. 

Amino acid analysis was determined on a gas chromatographic mass spectrometer^ 

using 100 microliter plasma samples and 25 mg portions of muscle. All samples were 
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lyophilized® then heated for one hour at 60 C and allowed to sit overnight. Derivatization 

of samples was continued with acetonitrileS and BSTFAS. Concentration of individual 

amino acids was based on selected ion monitoring that utilizes mass to charge ratios (m/z) 

of the individual amino acids. The m/z ratios iised were glycine, 102.2; alanine, 116.2; 

valine, 144.2; leucine,.isoleucine, valine, 144.2; and glutamate, 246.3. Norleucine was 

used as an internal standard. Initial injection and transfer line temperatures were set at 50, 

240 and 290 C, respectively. After injection, the oven was ramped from 50 C to 240 C at a 

rate of 20 C/min. Temperature was held at 240 C for one minute. A second ramp was 

initiated from 240 to 290 C at a rate of 60 C/min. Arterial and venous plasma samples from 

the same collection period were analyzed at the same time. All muscle samples were 

analyzed at the same time. Arterial and venous lactate and glucose concentrations from the 

same collection period were determined enzymatically, in duplicate, using a glucometer.h 

Data was analyzed by using analysis of variance with the general linear model and 

uneven sample distribution. Parameters were analyzed for diet effects, exercise effects, 

and diet x exercise interactions throughout the 38 week study. Means are expressed as 

least-squares means. Significance levels were set at P < 0.05. 
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RESULTS 

All values are presented as least-squares means. There were no significant 

differences in any utilization or release measured (Table 1). There were significant (P < 

0.05) dietary differences in arterial and venous glycine concentrations (Table 2). Arterial 

and venous glycine concentrations were 20-25% higher when dogs were fed the com-soy 

diet (199 and 173 |iM vs. 199 and 157 |lM, respectively) compared to concentrations when 

dogs were fed the meat-mixed diet (146 and 142 |iM vs. 147 and 133 |iM, respectively). 

There were similarly significant (P < 0.05) dietary differences in muscle glycine 

concentrations, also (Table 1). Dogs fed the corn-soy diet had muscle glycine 

concentrations averaging 5826 and 5962 |iM compared to concentrations averaging 5385 

and 4163 |iM when dogs were fed the meat-mixed diet 

Venous lactate concentrations were significantly greater (P < 0.05) when dogs were 

fed the meat-mixed diet (1.20, 1.12 |J,M) compared to when dogs were fed the com-soy 

base diet (1.08, 0.90 |iM). Arterial lactate concentrations were approaching a significant 

increase (P < 0.06) when dogs were fed the meat-mixed diet (1.04, 1.04 |iM) compared to 

when dogs were fed the com-soy base diet (1.02,0.85 |xM; Table 1). 

When dogs were exercised, arterial and venous leucine concentrations averaged 87 

and 90 jiM. However, when the dogs were unexercised, corresponding arterial and 

. venous leucine concentrations were 148 and 142 |iM, respectively. 

Arterial and venous glucose concentrations were significantly increased when dogs 

were exercised (120, 121 mg/dl and 115, 117 mg/dl, respectively) compared to arterial and 

venous concentrations when dogs were unexercised (111, 109 mg/dl and 96, 88 mg/dl, 

respectively). There was no effect of diet on the plasma concentrations of glucose. 

Body weight was significantly decreased when dogs were trained (30 and 31 kg) 

compared to when dogs were not trained (31 and 33 kg) and when fed the meat-mix diet 
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(31 and 31 kg) compared to when dogs were fed the com-soy diet (33 and 31 kg). Total 

hindleg blood flow and hematocrit did not change throughout the study (Table 2). Plasma 

flow was determined from total blood flow and hematocrit measurements that were 

determined for each dog at each sampling time. 
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DISCUSSION 

The fact that no gluconeogenic substrate measured showed a significant difference 

in utilization or release in the hindleg between diets or training regimen suggests that release 

and utilization of glucose and lactate, and of branched-chain and gluconeogenic amino acids 

in the hindleg are unaffected by diets and training regimen used in this study. More alanine 

was released from greyhound skeletal muscle than was any other amino acid measured, 

however. This observation is in agreement with human resting muscle utilization trends 

reported in the literature. ̂ 7,18 There were significant differences in paired arterial and 

venous amino acid concentrations when dogs were fed one diet, but not when fed the other 

diet, or when dogs were trained compared to when they were not trained. This 

observation, combined with insignificant utilization/release measurements may indicate that 

the A-V difference measurement techniques used in this study are too variable, as indicated 

by the large standard errors. This may have resulted from non-simultaneous sampling of 

artery and vein when exactly simultaneous sampling of artery and vein are required in a 

rapidly changing amino acid environment in order to determine utilization or release of 

amino acids. It is possible that both diets used in this study resulted in similar amino acid 

utilization or release from the hindleg, but may have produced differences in intestinal 

absorption rates, and therefore, in plasma levels of amino acids. Calculations of amino 

acids determined from steady state infusions of labelled amino acids would have been more 

definitive in determining if turnover rate of amino acids was different for either diet. 

There was a significant influence of diet on glycine concentration. Dogs had a 25% 

higher concentration of glycine in arterial and venous plasma and a 19% increase in glycine 

concentration of biceps femoris muscle when they were fed the corn-soy base diet than 

when fed meat. The diffusion of glycine from plasma to muscle is impaired by a 

permeability barrier, but total amount diffused can be increased with higher blood flow. ̂  9 
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Plasma glycine concentrations are elevated in starvation and isocaloric protein deprivation 

in man and are thought to be due to a decrease in nucleic acid synthesis for which glycine is 

a substrate.20 It is improbable that the com-soy diet used in this study would mimic either 

of those conditions because protein and calorie content were approximately equal between 

diets and adequate (Table 4). Although glycine content was virtually identical between 

diets given, there was an obvious trend in glycine utilization between diet groups when 

dogs were trained, although it was not physiologically significant. Glycine utilization was 

higher when dogs were fed the com-soy diet and trained compared to any other sampling 

period. Glycine protects rabbit kidney tubules against hypoxic injury in vitro. ̂ ^'21 It may 

be speculated that glycine offers the same protection against anoxia to exercising skeletal 

muscle, as well. Although a 30 second bout of exercise would not necessarily produce 

hypoxic conditions equal to the one hour of oxygen deprivation produced in the in vitro 

study, the idea of a potential mechanism to protect against hypoxia is intriguing. Alanine 

has been shown to be protective against anoxia in kidney tubules, as well. 8 Perhaps the 

training-induced increase in alanine production by way of the alanine-glucose cycle has 

additional benefits to exercising muscle other than just decreasing lactate accumulation. 

Although alanine and lactate utilization was not significantly different between any 

sampling period in this study, there are some interesting trends between these compounds 

when dogs were fed the corn-soy diet and trained. More alanine was released from dogs 

hindlegs when they were fed the com-soy diet and trained than when the same dogs were 

fed the meat-mixed diet and trained. In addition, when dogs were fed the corn-soy diet, 

regardless of whether or not they were trained, they had less lactate accumulation in both 

arterial and venous plasma samples. This difference may indicate that, with training, a 

com-soy diet is more beneficial in decreasing lactate production by increasing the flux of 

pyruvate through the alanine-glucose cycle. The causal relationship between increased 

alanine production and decreased lactate accumulation in skeletal muscle has been 
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proposed^'^ and has been postulated to increase with protein supplementation^ 1. In that 

study, the decrease in lactate concentration was associated with a concomitant increase in 

the enzyme glutamate-pyruvate transaminase, which is theorized to cause increased 

conversion of pyruvate to alanine and thereby decrease circulating lactate. Diets used in the 

present study each contained 134-139 g of protein, and although diets did differ in amino 

acid composition, there was not necessarily a difference in ratio of amino acids (Table 4). 

This difference in protein composition even though amount of protein is similar may 

indicate that a corn-soy protein source provides a different circulating amino acid profile 

than does a raw meat protein source. 

Arterial and venous leucine concentrations were both significantly lower when dogs 

were trained, although the measured utilization was not significantly different between 

training groups. Leucine flux is a measure of protein turnover in the body.22-27 This 

unchanged utilization with decreased circulating leucine may indicate a down regulation of 

protein metabolism when the dogs are trained. A similar conclusion about leucine flux was 

observed during exercise using constant infusions of 1-1 leucine and 6,6'2h glucose in 

exercising humans and stated the leucine flux decreased during the first 4 hours of exercise, 

then reached a new plateau 20% lower than the pre-exercise value.24 There were no 

differences in venous plasma amino acid concentrations in that reported study, and arterial 

plasma was not collected. 

Average body weight decreased 1.3 kg over each 7-week period when dogs were 

trained. This loss was expected because calories consumed were not increased, even 

though activity increased. This was not an unacceptable weight loss in dogs on a 38-week 

study, however. A similar weight loss occurred when dogs were fed the meat-mix diet. 

This may be a result of decreased water consumption or increased water loss due to urea 

excretion in those dogs fed a meat-mixed diet compared to dogs fed the corn-soy diet. 
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Although hematocrit did not change throughout the study, a change in body water can 

occur before significantly changing hematocrit.28 

Training caused an increase in resting circulating glucose concentration, regardless 

of diet consumed. Although not significantly different, a trained state also caused an 

increase in resting glutamate release from the hindleg when dogs were fed the corn-soy 

based diet. These two events may be related. It can be assumed that an increase in 

glutamate release from skeletal muscle means an increase in glutamate production within 

skeletal muscle. Glycolytic exercise, which depends on glucose from glycogen catabolism, 

results in pyruvate formation within skeletal muscle. The pyruvate can be either 

dehydrogenated to lactate, thus resynthesizing NAD+ to perpetuate glycolysis, or it can be 

transaminated to alanine and, through the gluconeogenic alanine-glucose cycle, decrease 

lactate accummulation and increase glucose production. Glutamate is the amino acid that 

provides an amino group for transamination of pyruvate to form alanine. Therefore, an 

increase in glutamate production may result in increased substrate for the alanine-glucose 

cycle, which could increase circulating glucose concentration necessary to glycolytic 

exercise. This increase in glutamate release from trained muscle may be extrapolated to 

mean that the com-soy based diet may allow more production of glutamate from trained 

muscle. 

Increased gluconeogenic potential has been suggested in studies using human 

runners. Increased plasma glucose was noted in elite Japanese runners during exercise 

compared with untrained controls and was attributed to alanine, pyruvate, and lactate 

conversion to glucose in excess of what untrained individuals were capable of 

converting.29 Post-exercise plasma alanine concentrations were the same and plasma 

lactate concentrations were higher in the untrained men. An increase in alanine-glucose 

cycling, resulting in less pyruvate available for lactate production, could explain why the 
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athletes had lower lactate concentrations and higher circulating glucose concentrations than 

did the untrained men. Diet composition was not mentioned in that study. 

In conclusion, it seems that the raw meat-mixed diet did not significantly alter 

hindleg release or utilization of alanine, glycine, leucine, isoleucine, valine, glutamate, 

glucose or lactate as determined by simultaneously collected arterial and venous blood 

samples, and gas chromatographic mass spectrometry analysis of amino acid 

determination. The large standard deviations observed in this study may indicate that (a) 

substrate utilization/release studies requiring simultaneous blood sampling and blood flow 

determination is subject to error when used on conscious dogs, (b) gas chromatography, 

mass spectrometry analysis of plasma samples is unpredictable, or (c) individual amino 

acid fluxes vary considerably in conscious dogs. In any case, constant infusion studies 

with labelled compounds may be the method of choice in determining fluxes through cyclic 

pathways of amino acid metabolism. It cannot be ruled out that the diets used in this study 

simply were not metabolized differently. In this case, the observation by the greyhound 

racing industry that a raw meat diet improves performance may be due to psychological 

factors rather than to metabolic factors. However, the fact that glycine concentration in the 

biceps femoris muscle of the greyhounds was significantly elevated when dogs were fed 

the com-soy diet would indicate a true metabolic difference. 

By examining trends in the alanine and glutamate utilization data as well as glucose 

and glutamate arterial and venous concentrations, it may be postulated that the corn-soy 

based diet increases glycolytic ability in exercising greyhounds by increasing the potential 

flux through the alanine-glucose cycle. Performance comparison of dogs fed these same 

diets would need to be done to truly assess dietary impact on racing time. 
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FOOTNOTES 

^Purina Hi-Pro®» Ralston-Purina Co., 1 Checkerboard Square, St. Louis, MO 

^Woodsen-Tenent Laboratories, Inc., Des Moines, Iowa 

CA whirligig is a circular track with a centrally attached fixed diameter arm to which 
a lure is affixed. The arm is either manually or electronically controlled. 

•^Harlan-Teklad®, Madison WI 

®Vac-stop® tray dryer, serial number 54744, Labconco Corp., Kansas City, MS 

^Hewlett Packard - 5970B series, mass selective detector, 5890A gas 
chromatograph, HP-1 crosslinked methyl silicon gum column (25m x 0.2mm x 0.11 |im 
film thickness). 

gAcetonitrile, BSTFA = bis (tri-methylsilyl)-tri-fluoroacetamide; Regis Chemical 
Company, 8210 Austin Ave, PC Box 519, Morton Grove, IL 60053 

hySI Model 2800 Glucose-Lactate Analyzer 
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Table 1. Least squares means of arterial and venous plasma and muscle (biceps femoris) 
concentrations (|iM), and of exchange (|imol/min) of glucose, lactate, and 
branched-chain and gluconeogenic amino acids in greyhound hindleg. 

Parameter Sampling Period^ P 3 Values^ 
M-N C-N M-T C-T D T D x T  

Arterial Alanine 282C 341 388 323 0.91 0.17 0.05 
Glutamate 96 88 74 68 0.34 30.01 0.90 
Glycine 146 199 143 173 <0.01 0.25 0.34 
Isoleucine 79 73 80 68 0.16 0.81 0.59 
Leucine 148 142 87 91 0.91 30.01 0.60 
Valine 2.34 201 209 173 0.05 0.15 0.94 
Glucose 111 109 120 121 0.80 30.01 0.64 
Lactate 1.04 1.02 1.04 0.85 0.06 0.13 0.14 

Venous Alanine 306 327 387 348 0.77 0.11 0.33 
Glutamate 105 89 72 82 0.82 0.15 0.35 
Glycine 148 199 133 157 0.02 0.09 0.40 
Isoleucine 81 73 76 76 0.63 0.91 0.59 
Leucine 148 134 88 92 0.72 30.01 0.51 
Valine 166 176 167 159 0.96 0.76 0.72 
Glucose 108 109 115 117 0.70 0.02 0.81 
Lactate 1.20 1.08 1.12 0.90 30.01 0.04 0.45 

U/Rd Alanine -5.71 2.44 -3.09 -8.15 0.83 0.58 0.35 
Glutamate -1.38 -0.65 0.87 -4.62 0.41 0.77 0.28 
Glycine 0.28 -1.07 -1.60 4.64 0.63 0.70 0.45 
Isoleucine -0.44 -0.27 1.59 -2.68 0.21 0.91 0.17 
Leucine 0.36 1.52 -0.18 -0.44 0.88 0.68 0.81 
Valine 19.8 3.65 12.65 3.30 0.19 0.70 0.72 
Glucose 0.75 0.09 1.46 1.24 0.36 0.06 0.65 
Lactate -0.04 -0.01 -0.02 -0.01 0.32 0.66 0.65 

Muscle Alanine 5335 5574 4778 5146 0.31 0.11 0.83 
Glutamate 16362 16152 15775 18395 0.32 0.51 0.25 
Glycine 5386 5829 4163 5962 <0.01 0.19 0.09 
Isoleucine 221 191 226 215 0.35 0.53 0.67 
Leucine 92 113 106 103 0.51 0.90 0.42 
Valine 543 635 614 632 0.26 0.48 0.45 

^MN=meat-mix diet, not trained; CN=com-soy diet, not trained; MT=meat-mix 
diet, trained; CT=com-soy diet, trained. 

values expressed for D=diet effect, T=training effect, and D x T=diet by training 
interaction. 

cValues based on 10 dogs in the "not trained" portion of the study, and 9 dogs in 
the "trained" portion of the study. One dog death occurred that was unrelated to treatments. 

du/R=utilization or release of parameter as determined by arterial minus venous 
concentration difference multiplied by plasma flow. 
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Table 2. Greyhound body weight, and hindleg blood flow and hematocrit 
determinations. 

Parameter Sampling Period^ P < Values'^ 
M-N C-N M-T C-T D T DxT 

Body weight (kg) 
31 33 30 31 0.01 0.01 0.01 

Hematocrit (%) 
50c 49 48 46 0.29 0.18 1.0 

Total blood flow^ 
(ml»min-l) 583 582 568 601 0.90 0.39 0.37 

^MN=meat-mix diet, not trained; CN=com-soy diet, not trained; MT=meat-
mix diet, trained; CT=com-soy diet, trained. 

^P < values expressed for D=diet effect, T=training effect, and D x T=diet 
by training interaction. 

cValues based on 10 dogs in the "not trained" portion of the study, and 9 
dogs in the "trained" portion of the study. One dog death occurred that was un
related to treatments. 

^Blood flow measured in the left external iliac vein of conscious dogs in left 
lateral recumbency. 
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Table 3. Amino acid content of diets fed to greyhounds 

Amino acid^ Com-soy base diet Raw beef-mixed diet 
g/day % g/day 

Alanine 2.0 11.4 1.3 10.4 
Arginine 1.4 7.8 1.1 8.8 
Aspartate 2.8 15.8 1.7 13.4 
Cystine .4 2.2 .2 1.7 
Methionine .6 3.1 .5 4.3 
Glycine 1.5 8.7 1.1 8.6 
Histidine .7 4.2 .6 4.6 
Glutamate 4.9 27.9 2.7 21.6 
Leucine 3.0 17.0 1.4 11.6 
Lysine 1.1 6.5 1.3 10.7 
Isoleucine 1.1 6.4 .8 6.6 
Phenylalanine 1.9 10.8 1.0 7.9 
Proline 2.2 12.4 1.0 8.0 
Serine 1.4 7.7 .7 5.8 
Threonine 1.0 5.9 .8 6.5 
Tryptophan .2 1.1 .2 1.7 
Tyrosine .7 3.9 .5 4.2 
Valine 1.3 7.6 .9 7.3 

^Amino acid analysis was determined on diet samples by 
using gas chromatography mass spectrometry at Woodsen-Tenent 
Laboratory, Des Moines, Iowa. 

^Percentage of diet, by weight, on a dry-matter basis. 
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Table 4. Composition of diets fed to greyhounds 

Parameter^ Diet l=com-soy Diet 2^=meat-mix 
%c g/day % g/day 

Grams/day<i — 500 — 950 

Kcals/day (calculated) — 1921 — 2076 

Protein (Kjeldahl) 26.8 134 14.7 139 

Fat (acid hydrolysis) 11.0 54.8 3.8 35.6 

Nitrogen-free extract 44.6 223 31.5 300 
(calculated) 

Moisture 8.7 44 48.4 460 
(forced draft oven) 

Fiber (crude) 1.8 9 0.3 3.2 

Calcium 1.4 6.8 0.1 1.1 

Phosphorus 1.0 4.8 0.1 1.0 

Ash 7.1 35.4 1.2 11.7 

^Woodson-Tenent Laboratories, Inc. Des Moines, lA. 

^Dlet 2 carbohydrate supplementation was 150 g sucrose 
during the untrained phase of the trial and was replaced with 150 g 
com starch during the training portion of the trial. 

^Percentage of diet, by weight, on a dry-matter basis. 

(^Grams fed per day is approximate because measuring cups 
were used daily to quantify amount of diets fed to dogs .rather than 
actual weights of diets. Volumes of each diet were measured in cups 
and weighed in triplicate before study began to estimate quantity needed 
per day.to provide approximately 2000 kcals. These weight to volume 
ratios were verified at 3 time points throughout the study. 
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GENERAL CONCLUSIONS 

The optimal diets fed to running greyhounds have been controversial. 

Traditionally, racing greyhounds have been fed a predominantly raw-beef diet, but recently 

the benefits of a com-soy based diet have been considered. This research was designed to 

compare if either diet was more beneficial in producing energy or in removing metabolites 

produced in a racing greyhound. This two-part study examined key energy producing 

enzymes, and substrates of the alanine-glucose cycle. 

Examined were glycogen content and activities of phosphofructokinase, citrate 

synthase, and glutamate-pyruvate transaminase in trained greyhounds fed either a meat-

mixed diet or a corn-soy based diet for 16 weeks. Because CS activity in skeletal muscle 

increased significantly at 8 weeks when dogs were fed a corn-soy diet and remained 

elevated at 16 weeks (P < 0.06) and the meat-mixed diet had no effect on any enzyme 

activity measured, it was concluded that the corn-soy diet may increase oxidative potential 

in greyhounds. This increase in CS activity may be related to increased physical activity 

levels in dogs fed the com-soy diet, also, and may, therefore, indicate that the com-soy diet 

optimizes physical conditions that favor activity. This elevation of CS activity may be 

important regardless of reason for elevation because CS is a key regulator of the citric acid 

cycle, and increased activity suggests increased flux through the citric acid cycle. 

Enzyme activities are not the only indicators of energy-producing potential. The 

alanine-glucose cycle unites activities of skeletal muscle with those of the liver. This cycle 

is important in removing nitrogenous waste from exercised muscle, in routing pyruvate 

produced from glycolysis away from lactate production into alanine in muscle, and in 

forming glucose within the liver from alanine released from skeletal muscle. Increased 

activity of the alanine-glucose cycle may thus be beneficial to an exercising dog that is 

producing nitrogenous waste and has a need for maintaining circulating glucose 
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concentrations. There were no significant differences in any hindleg utilization or release 

of substrates determined in the study conducted. Specifically measured were alanine, 

glutamate, leucine, isoleucine, valine, glycine, glucose, and lactate. Glycine 

concentrations, however, were significantly increased in arterial, venous and muscle 

samples when dogs were fed the com-soy diet. The following trends in arterial and venous 

concentrations were notable, but, not statistically significant (P > 0.05). More alanine was 

released from dogs hindlegs when they were fed the corn-soy diet and trained than when 

they were fed the meat-mixed diet and trained. When dogs were fed the com-soy diet 

regardless of whether or not they were exercised, they had less lactate accumulation in both 

arterial (P > 0.05) and venous (P < 0.05) plasma samples. Training 3 times /week caused 

an increase in resting glutamate release from the hindleg when dogs were fed the com-soy 

diet. Training caused a significant increase in resting circulating glucose concentration 

regardless of diet consumed. These trends in alanine and glutamate utilization and in 

lactate, glucose, and glutamate concentrations in arterial and venous plasma may indicate 

that the corn-soy diet increases glycolytic ability in trained greyhounds by increasing 

potential substrate flux through the alanine-glucose cycle. 

In summary, the increase in citrate synthase activity in those dogs fed the com-soy 

diet may indicate that the com-soy diet increases oxidative capacity of greyhound skeletal 

muscle. Although alanine-glucose cycle substrate utilization was not different between diet 

or exercise groups examined, trends in substrate concentration were notable and may 

indicate that the corn-soy also diet increases glycolytic potential of greyhound skeletal 

muscle by increasing potential substrate flux through the alanine-glucose cycle. Finally, 

the thermodilution technique was shown to be a reliable method of determining resting 

blood flow in the external iliac vein of conscious greyhounds. The effect of the corn-soy 

diet on racing performance needs to be addressed, however, before it can be recommended 
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for performance enhancement. It is possible that dogs prefer the raw-meat diet, therefore, a 

psychological factor may affect their performance when fed the meat-mixed diet. 
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APPENDIX 

Anova Table Format used in Paper 3 

Dependent Variable: AGLY 
Source DF Sum of Squares F Value P r > F  
Model 12 32738.2089947 2.26 0.0452 
Error 23 27805.4298942 
Corrected Total 35 60543.6388889 

R-Square C.V. AGLY Mean 
0.540737 20.84445 166.805556 

Source DF Type ISS F Value P r > F  

Dog 9 13758.6388889 1.26 0.3073 
Exercise 1 1200.0000000 0.99 0.3295 
Diet 1 16620.0455581 13.75 0.0012 
Exercise*Diet 1 1159.5245477 0.96 0.3376 

Source DF Type ni SS F Value P r > F  

Dog 9 12356.2066138 1.14 0.3788 
Exercise 1 1709.4722797 1.41 0.2465 
Diet 1 15113.3969851 12.50 0.0018 
Exercise*Diet 1 1159.5245477 0.96 0.3376 

Least-squares means 

Exercise Diet AGLY 
LSMeans 

1 2 145.800000 
1 2 199.300000 
2 3 142.981217 
2 3 173.272222 

Exercise level l=not trained 
Exercise level 2=trained 

Diet level 2=meat-mix diet 
Diet level 3=com-soy diet 
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